361
Views
19
CrossRef citations to date
0
Altmetric
Articles

A Direct Numerical Simulation Investigation of Spherically Expanding Flames Propagating in Fuel Droplet-Mists for Different Droplet Diameters and Overall Equivalence Ratios

, , & ORCID Icon
Pages 833-867 | Received 30 Sep 2018, Accepted 27 Jan 2019, Published online: 23 Mar 2019

References

  • Baba, Y., and Kurose, R. 2008. Analysis and flamelet modelling for spray combustion. J. Fluid Mech., 612, 45–79. doi:10.1017/S0022112008002620
  • Ballal, D.R., and Lefebvre, A.H. 1981. Flame propagation in heterogeneous mixtures of fuel droplets, fuel vapor and air. Symp. Combust., 18, 321–328. doi:10.1016/S0082-0784(81)80037-9
  • Burgoyne, J.H., and Cohen, L. 1954. The effect of drop size on flame propagation in liquid aerosols. Proc. R. Soc. Lond. Ser. A., 225, 375–392. doi:10.1098/rspa.1954.0210
  • Chakraborty, N., and Klein, M. 2009. Effects of global flame curvature on surface density function transport in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst., 32, 1435–1443. doi:10.1016/j.proci.2008.06.022
  • Chakraborty, N., Klein, M., and Cant, R.S. 2007. Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst., 31(1), 1385–1392. doi:10.1016/j.proci.2006.07.184
  • Chakraborty, N., Rogerson, J.W., and Swaminathan, N. 2010. The scalar gradient alignment statistics of flame kernels and its modelling implications for turbulent premixed combustion. Flow Turbul. Combust., 85, 25–55. doi:10.1007/s10494-010-9250-y
  • Chaos, M., Kazakov, A., Zhao, Z., and Dryer, F.L. 2007. A high‐temperature chemical kinetic model for primary reference fuels. Int. J. Chem. Kinet., 39, 399–414. doi:10.1002/kin.v39:7
  • Chiu, H.H., and Liu, T.M. 1977. Group combustion of liquid droplets. Combust. Sci. Technol., 17, 127–142. doi:10.1080/00102207708946823
  • Cosilab. 2011. Rotexo Software. Bochum, Germany.
  • de Chaisemartin, S., Fréret, L., Kah, D., Laurent, F., Fox, R., and Reveillon, J. 2009. Eulerian models for turbulent spray combustion with polydispersity and droplet crossing. C R Mecanique, 337, 438–448. doi:10.1016/j.crme.2009.06.016
  • Faeth, G.M. 1987. Mixing, transport and combustion in sprays. Prog. Energy Combust. Sci., 13, 293–345. doi:10.1016/0360-1285(87)90002-5
  • Fernández-Tarrazo, E., Sánchez, A.L., Liñán, A., and Williams, F.A. 2006. A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame, 147, 32–38. doi:10.1016/j.combustflame.2006.08.001
  • Fujita, A., Watanabe, H., Kurose, R., and Komori, S. 2013. Two-dimensional direct numerical simulation of spray flames – Part 1: effects of equivalence ratio, fuel droplet size and radiation, and validity of flamelet model. Fuel, 104, 515–525. doi:10.1016/j.fuel.2012.08.044
  • Greenberg, J.B. 2007. Finite-rate evaporation and droplet drag effects in spherical flame front propagation through a liquid fuel mist. Combust. Flame, 148, 187–197. doi:10.1016/j.combustflame.2006.12.003
  • Greenberg, J.B., and Kalma, A. 2000. A study of stretch in premixed spray flames. Combust. Flame, 123, 421–429. doi:10.1016/S0010-2180(00)00167-X
  • Greenberg, J.B., Silverman, I., and Tambour, Y. 1998. On droplet enhancement of the burning velocity of laminar premixed spray flames. Combust. Flame, 113, 271–273. doi:10.1016/S0010-2180(97)00191-0
  • Grout, R.W. 2007. An age extended progress variable for conditioning reaction rates. Phys. Fluids, 19, 105107. doi:10.1063/1.2773998
  • Han, I., and Huh, K.Y. 2008. Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame, 152, 194–205. doi:10.1016/j.combustflame.2007.10.003
  • Haruki, Y., Pillai, A.L., Kitano, T., and Kurose, R. 2018. Numerical investigation of flame propagation in fuel droplet arrays. At. Sprays, 28, 357. doi:10.1615/AtomizSpr.2018022342
  • Hayashi, S., Kumagai, S., and Sakai, T. 1977. Propagation velocity and structure of flames in droplet-vapor-air mixtures. Combust. Sci. Technol., 15, 169–177. doi:10.1080/00102207708946782
  • Jaegle, F., Senorer, J.-M., García, M., Bismes, F., Lecourt, R., Cuenot, B., and Poinsot, T. 2011. Eulerian and Lagrangian spray simulations of an aeronautical multipoint injector. Proc. Combust. Inst., 33, 2099–2107. doi:10.1016/j.proci.2010.07.027
  • Klein, M., Chakraborty, N., Jenkins, K.W., and Cant, R.S. 2006. Effects of initial radius on the propagation of premixed flame kernels in a turbulent environment. Phys. Fluids, 18, 055102. doi:10.1063/1.2196092
  • Kumar, K., Freeh, J.E., Sung, C.J., and Huang, Y. 2007. Laminar flame speeds of preheated iso-octance/O2/N2 and n-heptane/O2/N2 mixtures. J. Propul. Power, 23, 428–436. doi:10.2514/1.24391
  • Kuo, K.K., and Acharya, R. 2012. Fundamentals of Turbulent Multi-Phase Combustion, Wiley, Hoboken, NJ, 2nd ed.
  • Lawes, M., Lee, Y., and Marquez, N. 2006. Comparison of iso-octane burning rates between single-phase and two-phase combustion for small droplets. Combust. Flame, 144, 513–525. doi:10.1016/j.combustflame.2005.07.015
  • Lawes, M., and Saat, A. 2011. Burning rates of turbulent iso-octane aerosol mixtures in spherical flame explosions. Proc. Combust. Inst., 33, 2047–2054. doi:10.1016/j.proci.2010.05.094
  • Luo, K., Pitsch, H., Pai, M.G., and Desjardins, O. 2011. Direct numerical simulations and analysis of three-dimensional n-heptane spray flames in a model swirl combustor. Proc. Combust. Inst., 33, 2143–2152. doi:10.1016/j.proci.2010.06.077
  • Malkeson, S.P., and Chakraborty, N. 2010. Statistical analysis of displacement speed in turbulent stratified flames: a direct numerical simulation study. Combust. Sci. Technol., 182, 1841–1883. doi:10.1080/00102202.2010.500993
  • McGowan, E., Onysko, G., and Scheer, R.M. 2010. US energy conservation and efficiency policies: challenges and opportunities. Energy Policy, 38, 6398–6408. doi:10.1016/j.enpol.2010.01.038
  • Mizutani, Y., and Nakajima, A. 1973. Combustion of fuel vapor-drop-air systems: part II – spherical flames in a vessel. Combust. Flame, 20, 351–357. doi:10.1016/0010-2180(73)90027-8
  • Mizutani, Y., and Nishimoto, T. 1972. Turbulent flame velocities in premixed sprays part I. Experimental Study. Combust. Sci. Technol., 6, 1–10. doi:10.1080/00102207208952297
  • Neophytou, A., and Mastorakos, E. 2009. Simulations of laminar flame propagation in droplet mists. Combust. Flame, 156, 1627–1640. doi:10.1016/j.combustflame.2009.02.014
  • Neophytou, A., Mastorakos, E., and Cant, R.S. 2010. DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers. Combust. Flame, 157, 1071–1086. doi:10.1016/j.combustflame.2010.01.019
  • Neophytou, A., Mastorakos, E., and Cant, R.S. 2012. The internal structure of igniting turbulent sprays as revealed by complex chemistry DNS. Combust. Flame, 159, 641–664. doi:10.1016/j.combustflame.2011.08.024
  • Onuma, Y., Ogasawara, M., and Inoue, T. 1974. Studies of the structure of a spray combustion flame. Symp. Combust., 15, 453–465. doi:10.1016/S0082-0784(75)80319-5
  • Onuma, Y., Ogasawara, M., and Inoue, T. 1977. Further experiments on the structure of a spray combustion flame.  Proc. Combust. Inst., 16, 561–567.
  • Ozel Erol, G., Hasslberger, J., Klein, M., and Chakraborty, N. 2018. A direct numerical simulation analysis of spherically expanding turbulent flames in fuel droplet-mists for an overall equivalence ratio of unity. Phys. Fluids, 30, 086104. doi:10.1063/1.5045487
  • Pera, C., Chevillard, S., and Reveillon, J. 2013. Effects of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines. Combust. Flame, 160, 1020–1032. doi:10.1016/j.combustflame.2013.01.009
  • Peters, N., (2000), Turbulent Combustion, Cambridge Monograph on Mechanics, Cambridge University Press, Cambridge, UK.
  • Poinsot, T., and Lele, S.K. 1992. Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys., 101, 104–129. doi:10.1016/0021-9991(92)90046-2
  • Polymeropoulos, C.E. 1984. Flame propagation in aerosols of fuel droplets, fuel vapor and air. Combust. Sci. Technol., 40, 217–232. doi:10.1080/00102208408923807
  • Reddy, H., and Abraham, J. 2012. Two-dimensional direct numerical simulation evaluation of the flame-surface density model for flames developing from an ignition kernel in lean methane/air mixtures under engine conditions. Phys. Fluids, 24, 105108. doi:10.1063/1.4757655
  • Reveillon, J., and Demoulin, F.X. 2007. Evaporating droplets in turbulent reacting flows. Proc. Combust. Inst., 31, 2319–2326. doi:10.1016/j.proci.2006.07.114
  • Réveillon, J., and Vervisch, L. 2000. Spray vaporization in nonpremixed turbulent combustion modeling: a single droplet model: Combustion And Flame, 121, 75–90. doi:10.1016/S0010-2180(99)00157-1
  • Rogallo, R.S. 1981. Numerical experiments in homogeneous turbulence. Report. California.
  • Schroll, P., Wandel, A.P., Cant, R.S., and Mastorakos, E. 2009. Direct numerical simulations of autoignition in turbulent two-phase flows. Proc. Combust. Inst., 32(2), 2275–2282. doi:10.1016/j.proci.2008.06.057
  • Silverman, I., Greenberg, J.B., and Tambour, Y. 1993. Stoichiometry and polydisperse effects in premixed spray flames. Combust. Flame., 93, 97–118. doi:10.1016/0010-2180(93)90086-I
  • Sreedhara, S., and Huh, K.Y. 2007. Conditional statistics of nonreacting and reacting sprays in turbulent flows by direct numerical simulation. Proc. Combust. Inst., 31(2), 2335–2342. doi:10.1016/j.proci.2006.07.163
  • Swaminathan, N., and Bray, K.N.C. 2011. Turbulent Premixed Flames, Cambridge University Press, New York, p. 5.
  • Szekely, G.A., and Faeth, G.M. 1983. Effects of envelope flames on drop gasification rates in turbulent diffusion flames. Combust. Flame, 49, 255–259. doi:10.1016/0010-2180(83)90168-2
  • U.S. Energy Information Administration. 2016. International Energy Outlook 2016, Washington, DC.
  • Wacks, D., and Chakraborty, N. 2016a. Flame structure and propagation in turbulent flame-droplet interaction: a direct numerical simulation analysis. Flow, Turbul. Combust., 96, 1053–1081. doi:10.1007/s10494-016-9724-7
  • Wacks, D., and Chakraborty, N. 2016b. Statistical analysis of the reaction progress variable and mixture fraction gradients in flames propagating into droplet mist: a direct numerical simulation analysis. Combust. Sci. Technol., 188, 2149–2177. doi:10.1080/00102202.2016.1212605
  • Wacks, D., Chakraborty, N., and Mastorakos, E. 2016. Statistical analysis of turbulent flame-droplet interaction: a direct numerical simulation study. Flow Turbul. Combust., 96, 573–607. doi:10.1007/s10494-015-9652-y
  • Wandel, A.P. 2014. Influence of scalar dissipation on flame success in turbulent sprays with spark ignition. Combust. Flame., 161, 2579–2600. doi:10.1016/j.combustflame.2014.04.006
  • Wandel, A.P., Chakraborty, N., and Mastorakos, E. 2009. Direct numerical simulations of turbulent flame expansion in fine sprays. Proc. Combust. Inst., 32, 2283–2290. doi:10.1016/j.proci.2008.06.102
  • Wang, Y., and Rutland, C.J. 2005. Effects of temperature and equivalence ratio on the ignition of n-heptane fuel spray in turbulent flow. Proc. Combust. Inst., 30, 893–900. doi:10.1016/j.proci.2004.08.074
  • Watanabe, H., Kurose, R., Hwang, S.M., and Akamatsu, F. 2007. Characteristics of flamelets in spray flames formed in a laminar counterflow. Combust. Flame, 148, 234–248. doi:10.1016/j.combustflame.2006.09.006
  • Watanabe, H., Kurose, R., Komori, S., and Pitsch, H. 2008. Effects of radiation on spray flame characteristics and soot formation. Combust. Flame, 152, 2–13. doi:10.1016/j.combustflame.2007.07.021
  • Wray, A.A., 1990. Minimal storage time advanced schemes for spectral methods. NASA Ames Research Centre, California.
  • Xia, J., and Luo, K.H. 2010. Direct numerical simulation of inert droplet effects on scalar dissipation rate in turbulent reacting and non-reacting shear layers. Flow Turbul. Combust., 84, 397–422. doi:10.1007/s10494-009-9238-7
  • Yamashita, H., Shimada, M., and Takeno, T. 1996. A numerical study on flame stability at the transition point of jet diffusion flames. Symp. Combust., 26, 27–34. doi:10.1016/S0082-0784(96)80196-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.