264
Views
13
CrossRef citations to date
0
Altmetric
Articles

Effects of Turbulence Intensity and Biogas Composition on the Localized Forced Ignition of Turbulent Mixing Layers

, , & ORCID Icon
Pages 868-897 | Received 14 Oct 2018, Accepted 27 Jan 2019, Published online: 27 Feb 2019

References

  • Ahmed, S.F., and Mastorakos, E. 2006. Spark ignition of lifted turbulent jet flames. Combust. Flame, 146(1–2), 215–231. doi:10.1016/j.combustflame.2006.03.007
  • Ahmed, S.F., and Mastorakos, E. 2010. Correlation of spark ignition with the local instantaneous mixture fraction in a turbulent nonpremixed methane jet. Combust. Sci. Technol., 182(9), 1360–1368. doi:10.1080/00102201003730984
  • Ahmed, S.F., and Mastorakos, E. 2016. Spark ignition of a turbulent shear-less fuel-air mixing layer. Fuel, 164, 297–304. doi:10.1016/j.fuel.2015.10.001
  • Ballal, D.R., and Lefebvre, A.H. 1975. The influence of flow parameters on minimum ignition energy and quenching distance. Symp. Combust., 15(1), 1473–1481. doi:10.1016/S0082-0784(75)80405-X
  • Ballal, D.R., and Lefebvre, A.H. 1977. Spark ignition of turbulent flowing gases. In 15th Aerosp. Sci. Meet., American Institute of Aeronautics and Astronautics, Reston, Virigina, Vol. 155, pp. 129–155. doi : 10.2514/6.1977-185
  • Ballal, D.R., and Lefebvre, A.H. 1979. Ignition and flame quenching of flowing heterogeneous fuel-air mixtures. Combust. Flame, 35, 155–168. doi:10.1016/0010-2180(79)90019-1
  • Ballal, D.R., and Lefebvre, A.H. 1981. A general model of spark ignition for gaseous and liquid fuel-air mixtures. Symp. Combust., 18(1), 1737–1746. doi:10.1016/S0082-0784(81)80178-6
  • Batchelor, G.K., and Townsend, A.A. 1949. The nature of turbulent motion at large wave-numbers. Proc. R. Soc. A Math. Phys. Eng. Sci., 199(1057), 238–255.
  • Baum, M., and Poinsot, T. 1995. Effects of mean flow on premixed flame ignition. Combust. Sci. Technol., 106(1–3), 19–39. doi:10.1080/00102209508907765
  • Bibrzycki, J., and Poinsot, T. (2010). Reduced chemical kinetic mechanisms for methane combustion in O2/N2 and O2/CO2 atmosphere. Work. note ECCOMET WN/CFD/10/17, CERFACS.
  • Biet, J., Ndem, M., Idir, M., and Chaumeix, N. 2014. Ignition by electric spark and by laser-induced spark of ultra-lean CH 4/air and CH 4/CO 2/air mixtures at high pressure. Combust. Sci. Technol., 186(1), 1–23. doi:10.1080/00102202.2013.840296
  • Bilger, R. 1980. Turbulent flows with nonpremixed reactants. In Libby, P., and Williams, F. Eds. Turbulent Reacting Flows, Springer, Berlin/Heidelberg, Vol. 44 of Topics in Applied Physics, pp. 65–113.
  • Birch, A., Brown, D., and Dodson, M. 1981. Ignition probabilities in turbulent mixing flows. Symp. Combust., 18(1), 1775–1780. doi:10.1016/S0082-0784(81)80182-8
  • Briones, A.M., Aggarwal, S.K., and Katta, V.R. 2006. A numerical investigation of flame liftoff, stabilization, and blowout. Phys. Fluids, 18(4), 1–13. doi:10.1063/1.2191851
  • Chakraborty, N., and Mastorakos, E. 2006. Numerical investigation of edge flame propagation characteristics in turbulent mixing layers. Phys. Fluids, 18(10), 1–18. doi:10.1063/1.2357972
  • Chakraborty, N., and Mastorakos, E. 2008. Direct numerical simulations of localised forced ignition in turbulent mixing layers: The effects of mixture fraction and its gradient. Flow, Turbul. Combust., 80(2), 155–186. doi:10.1007/s10494-007-9110-6
  • Chakraborty, N., Mastorakos, E., and Cant, S. 2007. Effects of turbulence on spark ignition in inhomogeneous mixtures: A direct numerical simulation (DNS) study. Combust. Sci. Technol., 179(1–2), 293–317. doi:10.1080/00102200600809555
  • Forsich, C., Lackner, M., Winter, F., Kopecek, H., and Wintner, E. 2004. Characterization of laser-induced ignition of biogasair mixtures. Biomass Bioenergy, 27(3), 299–312. doi:10.1016/j.biombioe.2004.02.002
  • Galmiche, B., Halter, F., Foucher, F., and Dagaut, P. 2011. Effects of dilution on laminar burning velocity of premixed methane/air flames. Energy Fuels, 25(3), 948–954. doi:10.1021/ef101482d
  • Goodwin, D.G., Moffat, H.K., and Speth, R.L. (2018). Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. http://www.cantera.org. Version 2.4.0.
  • Hesse, H., Chakraborty, N., and Mastorakos, E. 2009. The effects of the Lewis number of the fuel on the displacement speed of edge flames in igniting turbulent mixing layers. Proc. Combust. Inst., 32, I:1399–1407. doi:10.1016/j.proci.2008.06.065
  • Hilbert, R., and Thevenin, D. (2002). Dns of multi-brachial structures with detailed chemistry and transport. In Proceedings of the 9th International Conference on Numerical Combustion, Paper, number 064, Sorrento, Italy. doi:10.1044/1059-0889(2002/er01)
  • Holm-Nielsen, J., Al Seadi, T., and Oleskowicz-Popiel, P. 2009. The future of anaerobic digestion and biogas utilization. Bioresour. Technol., 100(22), 5478–5484. doi:10.1016/j.biortech.2008.12.046
  • Im, H.G., and Chen, J.H. 1999. Structure and propagation of triple flames in partially premixed hydrogenair mixtures. Combust. Flame, 119(4), 436–454. doi:10.1016/S0010-2180(99)00073-5
  • Im, H.G., and Chen, J.H. 2001. Effects of flow strain on triple flame propagation. Combust. Flame, 126(1–2), 1384–1392. doi:10.1016/S0010-2180(01)00261-9
  • Jones, W., and Lindstedt, R.P. 1988. Global reaction schemes for hydrocarbon combustion. Combust. Flame, 73(3), 233–249. doi:10.1016/0010-2180(88)90021-1
  • Lafay, Y., Taupin, B., Martins, G., Cabot, G., Renou, B., and Boukhalfa, A.M. 2007. Experimental study of biogas combustion using a gas turbine configuration. Exp. Fluids, 43(2–3), 395–410. doi:10.1007/s00348-007-0302-6
  • Lieuwen, T., McDonell, V., Petersen, E., and Santavicca, D. 2008. Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability. J. Eng. Gas Turbines Power, 130(1), 011506. doi:10.1115/1.2771243
  • Markides, C.N., and Chakraborty, N. 2013. Statistics of the scalar dissipation rate using direct numerical simulations and planar laser-induced fluorescence data. Chem. Eng. Sci., 90, 221–241. doi:10.1016/j.ces.2012.12.026
  • Mastorakos, E. 2009. Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci., 35(1), 57–97. doi:10.1016/j.pecs.2008.07.002
  • Mastorakos, E. 2017. Forced ignition of turbulent spray flames. Proc. Combust. Inst., 36(2), 2367–2383. doi:10.1016/j.proci.2016.08.044
  • Mastorakos, E., Baritaud, T.A., and Poinsot, T. 1997. Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame, 109(1–2), 198–223. doi:10.1016/S0010-2180(96)00149-6
  • Mordaunt, C.J., and Pierce, W.C. 2014. Design and preliminary results of an atmospheric-pressure model gas turbine combustor utilizing varying CO2 doping concentration in CH4 to emulate biogas combustion. Fuel, 124, 258–268. doi:10.1016/j.fuel.2014.01.097
  • Mulla, I.A., Chakravarthy, S.R., Swaminathan, N., and Balachandran, R. 2016. Evolution of flame-kernel in laser-induced spark ignited mixtures: A parametric study. Combust. Flame, 164, 303–318. doi:10.1016/j.combustflame.2015.11.029
  • Neophytou, A., Mastorakos, E., and Cant, S. 2010. DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers. Combust. Flame, 157(6), 1071–1086. doi:10.1016/j.combustflame.2010.01.019
  • Pantano, C. 2004. Direct simulation of non-premixed flame extinction in a methane - Air jet with reduced chemistry. J. Fluid Mech., 514, 231–270. doi:10.1017/S0022112004000266
  • Patel, D., and Chakraborty, N. 2014. Localised forced ignition of globally stoichiometric stratified mixtures: A numerical investigation. Combust. Theory Model., 18(6), 627–651. doi:10.1080/13647830.2014.959456
  • Patel, D., and Chakraborty, N. 2015. Effects of energy deposition characteristics on localised forced ignition of homogeneous mixtures. Int. J. Spray Combust. Dyn., 7(2), 151–174. doi:10.1260/1756-8277.7.2.151
  • Patel, D., and Chakraborty, N. 2016a. Effects of fuel Lewis number on localised forced ignition of turbulent homogeneous mixtures: A numerical investigation. Int. J. Spray Combust. Dyn., 8(3), 183–196. doi:10.1177/1756827716651579
  • Patel, D., and Chakraborty, N. 2016b. Effects of mixture distribution on localized forced ignition of stratified mixtures: A direct numerical simulation study. Combust. Sci. Technol., 188(11–12), 1904–1924. doi:10.1080/00102202.2016.1214415
  • Peters, N. 2000. Turbulent Combustion, Cambridge, UK: Cambridge University Press, 1st.
  • Poinsot, T., and Veynante, D. 2005. Theoretical and Numerical Combustion, Edwards. 2nd.
  • Ray, J., Najm, H.N., and Mccoy, R.B. 2001. Ignition front structure in a methane-air jet. 2nd Jt. Meet. US Sect. Combust. Inst., 150.
  • Richardson, E.S., Chakraborty, N., and Mastorakos, E. 2007. Analysis of direct numerical simulations of ignition fronts in turbulent non-premixed flames in the context of conditional moment closure. Proc. Combust. Inst., 31(I), 1683–1690. doi:10.1016/j.proci.2006.07.221
  • Richardson, E.S., and Mastorakos, E. 2007. Numerical investigation of forced ignition in laminar counterflow non-premixed methane-air flames. Combust. Sci. Technol., 179(1–2), 21–37. doi:10.1080/00102200600805892
  • Rogallo, R.S. (1981). Numerical experiments in homogeneous turbulence. Technical report, NASA Ames.
  • Ruetsch, G.R., Vervisch, L., and Liñán, A. 1995. Effects of heat release on triple flames. Phys. Fluids, 7(6), 1447–1454. doi:10.1063/1.868531
  • Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.-U., Krebs, W., Prade, B., Kaufmann, P., and Veynante, D. 2004. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame, 137(4), 489–505. doi:10.1016/j.combustflame.2004.03.008
  • Smith, G., Golden, D., Frenklach, M., Moriarty, N., Eiteneer, B., Goldenberg, M., Bowman, C., Hanson, R., Song, S., Gardiner, W., Lissianski, V., and Qin, Z. (2000). Gri-Mech 3.0. Accessed February 25, 2018. http://www.me.berkeley.edu/gri-mech/version30/text30.html.
  • Sutherland, J.C., and Kennedy, C.A. 2003. Improved boundary conditions for viscous, reacting, compressible flows. J. Comput. Phys., 191(2), 502–524. doi:10.1016/S0021-9991(03)00328-0
  • Turquand d’Auzay, C., Papapostolou, V., Ahmed, S.F., and Chakraborty, N. 2019. On the minimum ignition energy and its transition in the localised forced ignition of turbulent homogeneous mixtures. Combust. Flame, 201, 104–117. doi:10.1016/j.combustflame.2018.12.015
  • Vasavan, A., de Goey, P., and van Oijen, J. 2018. Numerical study on the autoignition of biogas in moderate or intense low oxygen dilution nonpremixed combustion systems. Energy Fuels, 32(8), 8768–8780. doi:10.1021/acs.energyfuels.8b01388
  • Vázquez-Espí, C., and Liñán, A. 2001. Fast, non-diffusive ignition of a gaseous reacting mixture subject to a point energy source. Combust. Theory Model., 5(3), 485–498. doi:10.1088/1364-7830/5/3/313
  • Vázquez-Espí, C., and Liñán, A. 2002. Thermal-diffusive ignition and flame initiation by a local energy source. Combust. Theory Model., 6(2), 297–315. doi:10.1088/1364-7830/6/2/309
  • Vedula, P., Yeung, P.K., and Fox, R.O. 2004. Dynamics of scalar dissipation in isotropic turbulence: A numerical and modelling study. J. Fluid Mech., 503, 377. doi:10.1017/S0022112004228713
  • Wandel, A.P. 2014. Influence of scalar dissipation on flame success in turbulent sprays with spark ignition. Combust. Flame, 161(10), 2579–2600. doi:10.1016/j.combustflame.2014.04.006
  • Westbrook, C.K., and Dryer, F.L. 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol., 27(1–2), 31–43. doi:10.1080/00102208108946970
  • Wray, A. 1990. Minimal Storage Time Advancement Schemes for Spectral Methods, NASA Ames Research Center, California.
  • Yamashita, H., Shimada, M., and Takeno, T. 1996. A numerical study on flame stability at the transition point of jet diffusion flames. Symp. Combust., 26(1), 27–34. doi:10.1016/S0082-0784(96)80196-2
  • Yoo, C.S., and Im, H.G. 2005. Transient dynamics of edge flames in a laminar nonpremixed hydrogenair counterflow. Proc. Combust. Inst., 30(1), 349–356. doi:10.1016/j.proci.2004.08.052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.