493
Views
33
CrossRef citations to date
0
Altmetric
Articles

Insights into the Bending Effect in Premixed Turbulent Combustion Using the Flame Surface Density Transport

, &
Pages 898-920 | Received 01 Oct 2018, Accepted 29 Jan 2019, Published online: 17 Mar 2019

References

  • Abdel-Gayed, R.G., Al-Khishali, K.J., and Bradley, D. 1984. Turbulent burning velocities and flame straining in explosions. Proc. R. Soc. A Math. Phys. Eng. Sci., 391(1801), 393–414. doi: 10.1098/rspa.1984.0019.
  • Abdel-Gayed, R.G., and Bradley, D. 1977. Dependence of turbulent burning velocity on turbulent Reynolds number and ratio of flaminar burning velocity to R.M.S. turbulent velocity. Symp. Combust., 16(1), 1725–1735. doi: 10.1016/S0082-0784(77)80450-5.
  • Ahmed, U., Doan, N.A.K., Lai, J., Klein, M., Chakraborty, N., and Swaminathan, N. 2018. Multiscale analysis of head-on quenching premixed turbulent flames. Phys. Fluids, 30(10), 105102. doi: 10.1063/1.5047061.
  • Ahmed, U., and Prosser, R. 2016 Jan. Modelling flame turbulence interaction in RANS simulation of premixed turbulent combustion. Combust. Theory Model., 20(1), 34–57. doi: 10.1080/13647830.2015.1115130.
  • Ahmed, U., and Prosser, R. 2018. A posteriori assessment of algebraic scalar dissipation models for RANS simulation of premixed turbulent combustion. Flow. Turbul. Combust., 100(1), 39–73. doi: 10.1007/s10494-017-9824-z.
  • Ahmed, U., Prosser, R., and Revell, A.J. 2014. Towards the development of an evolution equation for flame turbulence interaction in premixed turbulent combustion. Flow Turbul. Combust., 93(4), 637–663. doi: 10.1007/s10494-014-9557-1.
  • Aspden, A.J., Day, M.S., and Bell, J.B. 2011 may. Turbulence flame interactions in lean premixed hydrogen: transition to the distributed burning regime. J. Fluid Mech., 680, 287–320. doi: 10.1017/jfm.2011.164.
  • Boger, M., Veynante, D., Boughanem, H., and Trouvé, A. 1998. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Symp. Combust., 27(1), 917–925. doi: 10.1016/S0082-0784(98)80489-X.
  • Bradley, D. 1992. How fast can we burn? Symp. Combust., 24(1), 247–262. doi: 10.1016/S0082-0784(06)80034-2.
  • Bradley, D. 2002. Problems of predicting turbulent burning rates. Combust. Theory Model., 6(2), 361–382. doi: 10.1088/1364-7830/6/2/312.
  • Bray, K.N.C. 1990 nov. Studies of the turbulent burning velocity. Proc. R. Soc. A Math. Phys. Eng. Sci., 431(1882), 315–335. doi: 10.1098/rspa.1990.0133.
  • Bray, K.N.C., and Cant, R.S. 1991 jul. Some applications of Kolmogorov’s Turbulence Research in the field of combustion. Proc. R. Soc. A Math. Phys. Eng. Sci., 434(1890), 217–240. doi: 10.1098/rspa.1991.0090.
  • Butz, D., Gao, Y., Kempf, A.M., and Chakraborty, N. 2015. Large Eddy Simulations of a turbulent premixed swirl flame using an algebraic scalar dissipation rate closure. Combust. Flame, 162(9), 3180–3196. doi: 10.1016/j.combustflame.2015.05.003.
  • Candel, S.M., and Poinsot, T.J. 1990. Flame stretch and the balance equation for the flame area. Combust. Sci. Technol., 70(1–3), 1–15. doi: 10.1080/00102209008951608.
  • Chakraborty, N., Alwazzan, D., Klein, M., and Cant, R.S. 2019 Jul. On the validity of Damköhler’s first hypothesis in turbulent Bunsen burner flames: a computational analysis. Proc. Combust. Inst., 000, 1–9.
  • Chakraborty, N., and Cant, R.S. 2004 Apr. Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration. Combust. Flame, 137(1–2), 129–147. doi: 10.1016/j.combustflame.2004.01.007.
  • Chakraborty, N., and Cant, R.S. 2005. Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Phys. Fluids, 17(6), 065108. doi: 10.1063/1.1923047.
  • Chakraborty, N., and Cant, R.S. 2007. A priori analysis of the curvature and propagation terms of the flame surface density transport equation for large eddy simulation. Phys. Fluids, 19(10). doi: 10.1063/1.2772326.
  • Chakraborty, N., and Cant, R.S. 2009. Direct numerical simulation analysis of the flame surface density transport equation in the context of Large Eddy Simulation. Proc. Combust. Inst., 32(1), 1445–1453. doi: 10.1016/j.proci.2008.06.028.
  • Chakraborty, N., and Cant, R.S. 2011 Sep. Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame, 158(9), 1768–1787. doi: 10.1016/j.combustflame.2011.01.011.
  • Chakraborty, N., and Klein, M. 2008a Jun. Influence of Lewis number on the surface density function transport in the thin reaction zone regime for turbulent premixed flames. Phys. Fluids, 20(6), 065102. doi: 10.1063/1.2919129.
  • Chakraborty, N., and Klein, M. 2008b Aug. A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Phys. Fluids, 20(8), 085108. doi: 10.1063/1.2969474.
  • Chakraborty, N., Klein, M., and Cant, R.S. 2007. Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst., 31(1), 1385–1392. doi: 10.1016/j.proci.2006.07.184.
  • Chakraborty, N., Klein, M., and Swaminathan, N. 2009. Effects of Lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst., 32(1), 1409–1417. doi: 10.1016/j.proci.2008.06.021.
  • Chakraborty, N., and Swaminathan, N. 2007. Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight. Phys. Fluids, 19(4), 045103. doi: 10.1063/1.2714070.
  • Chatakonda, O., Hawkes, E.R., Aspden, A.J., Kerstein, A.R., Kolla, H., and Chen, J.H. 2013. On the fractal characteristics of low Damköhler number flames. Combust. Flame, 160(11), 2422–2433. doi: 10.1016/j.combustflame.2013.05.007.
  • Damköhler, G. 1940. Der einfluss der turbulenz auf die flammengeschwindigkeit in gasgemis-chen. Z. Elektrochem. Angew. Phys. Chem., 46(11), 601–626.
  • Doan, N., Swaminathan, N., and Chakraborty, N. 2017. Multiscale analysis of turbulence-flame interaction in premixed flames. Proc. Combust. Inst., 36(2), 1929–1935. doi: 10.1016/j.proci.2016.07.111.
  • Dong, H.Q., Robin, V., Mura, A., and Champion, M. 2013. Analysis of algebraic closures of the mean scalar dissipation rate of the progress variable applied to stagnating turbulent flames. Flow Turbul. Combust., 90(2), 301–323. doi: 10.1007/s10494-012-9432-x.
  • Dunstan, T.D., Minamoto, Y., Chakraborty, N., and Swaminathan, N. 2013. Scalar dissipation rate modelling for large eddy simulation of turbulent premixed flames. Proc. Combust. Inst., 34(1), 1193–1201. doi: 10.1016/j.proci.2012.06.143.
  • Echekki, T., and Chen, J.H. 1999 Jul. Analysis of the contribution of curvature to premixed flame propagation. Combust. Flame, 118(1–2), 308–311. doi: 10.1016/S0010-2180(99)00006-1.
  • Gao, Y., Chakraborty, N., and Swaminathan, N. 2014. Algebraic closure of scalar dissipation rate for large eddy simulations of turbulent premixed combustion. Combust. Sci. Technol., 186(10–11), 1309–1337. doi: 10.1080/00102202.2014.934581.
  • Hawkes, E.R., and Cant, R.S. 2001 Aug. Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combust. Flame, 126(3), 1617–1629. doi: 10.1016/S0010-2180(01)00273-5.
  • Hawkes, E.R., and Chen, J.H. 2005. Evaluation of models for flame stretch due to curvature in the thin reaction zones regime. Proc. Combust. Inst., 30(1), 647–655. doi: 10.1016/j.proci.2004.08.106.
  • Jenkins, K., and Cant, R. (1999). Direct numerical simulation of turbulent flame kernels. In Knight, D., and Sakell, L. (Eds.), Recent advances in DNS and LES: Proceedings of the second AFOSR conference, Rutgers – The State University of New Jersey, New Brunswick, USA. Dordrecht, Kluwer, pp. 191–202.
  • Karpov, V., and Sokolik, A. 1961. The relationship between the self-inflammation of paraffins and their rates of laminar and turbulent burning. Inst. Chem. Phys. USSR Acad. Sci. Moscow, 138, 874–876.
  • Katragadda, M., Chakraborty, N., and Cant, R.S. 2012. Effects of turbulent Reynolds number on the performance of algebraic flame surface density models for large eddy simulation in the thin Q4 reaction zones regime: a direct numerical simulation analysis. J. Combust., 2012, 353257. doi: 10.1155/2012/353257.
  • Katragadda, M., Malkeson, S.P., and Chakraborty, N. 2011. Modelling of the tangential strain rate term of the flame surface density transport equation in the context of Reynolds Averaged Navier–Stokes simulation. Proc. Combust. Inst., 33(1), 1429–1437. doi: 10.1016/j.proci.2010.06.129.
  • Katragadda, M., Malkeson, S.P., and Chakraborty, N. 2014. Modelling of the curvature term in the flame surface density transport equation: a direct numerical simulations based analysis. Int. J. Spray Combust. Dyn., 6(2), 163–198. doi: 10.1260/1756-8277.6.2.163.
  • Kim, H.S., and Pitsch, H. 2007. Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Fluids, 19(11), 115104. doi: 10.1063/1.2784943.
  • Klein, M., Chakraborty, N., and Ketterl, S. 2017 Dec. A comparison of strategies for direct numerical simulation of turbulence chemistry interaction in generic planar turbulent premixed flames. Flow Turbul. Combust., 99(3–4), 955–971. doi: 10.1007/s10494-017-9843-9.
  • Knikker, R., Veynante, D., and Meneveau, C. 2002. A priori testing of a similarity model for large eddy simulations of turbulent premixed combustion. Proc. Combust. Inst., 29, 2105–2111. doi: 10.1016/S1540-7489(02)80256-5.
  • Leung, T., Swaminathan, N., and Davidson, P.A. 2012. Geometry and interaction of structures in homogeneous isotropic turbulence. J. Fluid Mech., 710, 453–481. doi: 10.1017/jfm.2012.373.
  • Lipatnikov, A.N., and Chomiak, J. 2002. Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog. Energy Combust. Sci., 28(1), 1–74. doi: 10.1016/S0360-1285(01)00007-7.
  • Lipatnikov, A.N., and Chomiak, J. 2005. Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. Sci., 31(1), 1–73. doi: 10.1016/j.pecs.2004.07.001.
  • Meneveau, C., and Poinsot, T.J. 1991. Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame, 332, 311–332. doi: 10.1016/0010-2180(91)90126-V.
  • Nivarti, G.V., and Cant, R.S. 2017a. Direct Numerical Simulation of the bending effect in turbulent premixed flames. Proc. Combust. Inst., 36(2), 1903–1910. doi: 10.1016/j.proci.2016.07.076.
  • Nivarti, G.V., and Cant, R.S. 2017b Aug. Scalar transport and the validity of Damköhler’s hypotheses for flame propagation in intense turbulence. Phys. Fluids, 29(8), 085107. doi: 10.1063/1.4996045.
  • Peters, N. 2000. Turbulent Combustion, Cambridge University Press, United Kingdom.
  • Peters, N., Terhoeven, P., Chen, J.H., and Echekki, T. 1998. Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Symp. Combust., 27(1), 833–839. doi: 10.1016/S0082-0784(98)80479-7.
  • Poinsot, T.J., and Lele, S. 1992 Jul. Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys., 101(1), 104–129. doi: 10.1016/0021-9991(92)90046-2.
  • Pope, S.B. 1988. The evolution of surfaces in turbulence. Int. J. Eng. Sci., 26(5), 445–469. doi: 10.1016/0020-7225(88)90004-3.
  • Sabelnikov, V.A., Lipatnikov, A.N., Chakraborty, N., Nishiki, S., and Hasegawa, T. 2017. A balance equation for the mean rate of product creation in premixed turbulent flames. Proc. Combust. Inst., 36(2), 1893–1901. doi: 10.1016/j.proci.2016.08.018.
  • Sellmann, J., Lai, J., Kempf, A.M., and Chakraborty, N. 2017. Flame surface density based modelling of head-on quenching of turbulent premixed flames. Proc. Combust. Inst., 36(2), 1817–1825. doi: 10.1016/j.proci.2016.07.114.
  • Trouvé, A., and Poinsot, T. 1994 Nov. The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech., 278, 1–31. doi: 10.1017/S0022112094003599.
  • Veynante, D., Trouvé, A., Bray, K.N.C., and Mantel, T. 1997 Feb. Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech., 332, 263–293. doi: 10.1017/S0022112096004065.
  • Wacks, D.H., Chakraborty, N., Klein, M., Arias, P.G., and Im, H.G. 2016. Flow topologies in different regimes of premixed turbulent combustion: a direct numerical simulation analysis. Phys. Rev. Fluids, 1(8), 1–16. doi: 10.1103/PhysRevFluids.1.083401.
  • Wray, A.A. (1990). Minimal storage time advancement schemes for spectral methods (Tech. Rep.). Report No. MS 202 A-1, NASA Ames Research Center, California, USA.
  • Yu, R., Bai, X.-S., and Lipatnikov, A.N. 2015 Jun. A direct numerical simulation study of interface propagation in homogeneous turbulence. J. Fluid Mech., 772, 127–164. doi: 10.1017/jfm.2015.211.
  • Yu, R., and Lipatnikov, A.N. 2017 Jun. Direct numerical simulation study of statistically stationary propagation of a reaction wave in homogeneous turbulence. Phys. Rev. E, 95(6), 063101. doi: 10.1103/PhysRevE.95.032145.
  • Zhang, S., and Rutland, C.J. 1995 Sep. Premixed flame effects on turbulence and pressure-related terms. Combust. Flame, 102(4), 447–461. doi: 10.1016/0010-2180(95)00036-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.