479
Views
11
CrossRef citations to date
0
Altmetric
Articles

Plug-Flow Reactor Study of the Partial Oxidation of Methane and Natural Gas at Ultra-Rich Conditions

, &
Pages 1571-1584 | Received 10 Sep 2018, Accepted 30 Jan 2019, Published online: 17 Feb 2019

References

  • Amano, T., and Dryer, F.L. 1998. Effect of dimethyl ether, NOx, and ethane on CH4 oxidation: high pressure, intermediate-temperature experiments and modeling. Proc. Combust. Inst., 27, 397–404. doi:10.1016/S0082-0784(98)80428-1
  • Arutyunov, V.S., Rudakov, V.M., Savchenko, V.I., Sheverdenkin, E.V., Sheverdenkina, O.G., and Zheltyakov, A.Y. 2002. Partial alkane oxidation kinetics at high pressures: methane oxidation in stainless steel and quartz reactors. Theor. Found. Chem. Eng., 36, 472–476. doi:10.1023/A:1020677829300
  • Atakan, B. 2011. Gas turbines for polygeneration? A thermodynamic investigation of a fuel rich gas turbine cycle. Int. J. Thermodyn., 14, 185–192. doi:10.5541/ijot.308
  • Aul, C.J., Metcalfe, W.K., Burke, S.M., Curran, H.J., and Petersen, E.L. 2013. Ignition and kinetic modeling of methane and ethane fuel blends with oxygen: a design of experiments approach. Combust. Flame, 160, 1153–1167. doi:10.1016/j.combustflame.2013.01.019
  • Battin-Leclerc, F. 2008. Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Prog. Energy Combust. Sci., 34, 440–498. doi:10.1016/j.pecs.2007.10.002
  • Burch, R., Squire, G.D., and Tsang, S.C. 1989. Direct conversion of methane into methanol. J. Chem. Soc., Faraday Trans., 1(85), 3561–3568. doi:10.1039/f19898503561
  • Burke, U., Somers, K.P., O’Toole, P., Zinner, C.M., Marquet, N., Bourque, G., Petersen, E.L., Metcalfe, W.K., Serinyel, Z., and Curran, H.J. 2015. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures. Combust. Flame, 162, 315–330. doi:10.1016/j.combustflame.2014.08.014
  • Dagaut, P., Boettner, J.-C., and Cathonnet, M. 1991. Methane oxidation: experimental and kinetic modeling study. Combust. Sci. Technol., 77, 127–148. doi:10.1080/00102209108951723
  • Dagaut, P., and Dayma, G. 2006. Hydrogen-enriched natural gas blend oxidation under high-pressure conditions: experimental and detailed chemical kinetic modeling. Int. J. Hydrogen Energy, 31, 505–515. doi:10.1016/j.ijhydene.2005.04.020
  • Dagaut, P., and Nicolle, A. 2005. Experimental and detailed kinetic modeling study of hydrogen-enriched natural gas blend oxidation over extended temperature and equivalence ratio ranges. Proc. Combust. Inst., 30, 2631–2638. doi:10.1016/j.proci.2004.07.030
  • Dames, E.E., Rosen, A.S., Weber, B.W., Gao, C.W., Sung, C.-J., and Green, W.H. 2016. A detailed combined experimental and theoretical study on dimethyl ether/propane blended oxidation. Combust. Flame, 168, 310–330. doi:10.1016/j.combustflame.2016.02.021
  • Donohoe, N., Heufer, A., Metcalfe, W.K., Curran, H.J., Davis, M.L., Mathieu, O., Plichta, D., Morones, A., Petersen, E.L., and Güthe, F. 2014. Ignition delay times, laminar flame speeds, and mechanism validation for natural gas/hydrogen blends at elevated pressures. Combust. Flame, 161, 1432–1443. doi:10.1016/j.combustflame.2013.12.005
  • El Bakali, A., Dagaut, P., Pillier, L., Desgroux, P., Pauwels, J.-F., Rida, A., and Meunier, P. 2004. Experimental and modeling study of the oxidation of natural gas in a premixed flame, shock tube, and jet-stirred reactor. Combust. Flame, 137, 109–128. doi:10.1016/j.combustflame.2004.01.004
  • Gallagher, S.M., Curran, H.J., Metcalfe, W.K., Healy, D., Simmie, J.M., and Bourque, G. 2008. A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime. Combust. Flame, 153, 316–333. doi:10.1016/j.combustflame.2007.09.004
  • Glarborg, P., and Bentzen, L.L.B. 2008. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy Fuels, 22, 291–296. doi:10.1021/ef7005854
  • Gossler, H., and Deutschmann, O. 2015. Numerical optimization and reaction flow analysis of syngas production via partial oxidation of natural gas in internal combustion engines. Int. J. Hydrogen Energy, 40, 11046–11058. doi:10.1016/j.ijhydene.2015.06.125
  • Hashemi, H., Christensen, J.M., Gersen, S., Levinsky, H., Klippenstein, S.J., and Glarborg, P. 2016. High-pressure oxidation of methane. Combust. Flame, 172, 349–364. doi:10.1016/j.combustflame.2016.07.016
  • Hashemi, H., Christensen, J.M., Harding, L.B., Klippenstein, S.J., and Glarborg, P. 2018. High-pressure oxidation of propane. Proc. Combust. Inst., In Press. doi:10.1016/j.proci.2018.07.009
  • Healy, D., Curran, H.J., Simmie, J.M., Kalitan, D.M., Zinner, C.M., Barrett, A.B., Petersen, E.L., and Bourque, G. 2008. Methane/ethane/propane mixture oxidation at high pressures and at high, intermediate and low temperatures. Combust. Flame, 155, 441–448. doi:10.1016/j.combustflame.2008.07.003
  • Hegner, R., and Atakan, B. 2017. A polygeneration process concept for HCCI-engines - modeling product gas purification and exergy losses. Int. J. Hydrogen Energy, 42, 1287–1297. doi:10.1016/j.ijhydene.2016.09.050
  • Hegner, R., Werler, M., Schiessl, R., Maas, U., and Atakan, B. 2017. Fuel-rich HCCI-engines as chemical reactors for polygeneration: a modeling and experimental study on product species and thermodynamics. Energy Fuels, 31, 14079–14088. doi:10.1021/acs.energyfuels.7b02150
  • Hunter, T.B., Wang, H., Litzinger, T.A., and Frenklach, M. 1994. The oxidation of methane at elevated pressures: experiments and modeling. Combust. Flame, 97, 201–224. doi:10.1016/0010-2180(94)90005-1
  • Kintech Laboratory. 2016. Chemical WorkBench® 4.1.
  • Li, Z., Cheng, X., Wei, W., Qiu, L., and Wu, H. 2017. Effects of hydrogen addition on laminar flame speeds of methane, ethane and propane: experimental and numerical analysis. Int. J. Hydrogen Energy, 42, 24055–24066. doi:10.1016/j.ijhydene.2017.07.190
  • Nilsson, E.J.K., van Sprang, A., Larfeldt, J., and Konnov, A.A. 2017. The comparative and combined effects of hydrogen addition on the laminar burning velocities of methane and its blends with ethane and propane. Fuel, 189, 369–376. doi:10.1016/j.fuel.2016.10.103
  • Petersen, E.L., Kalitan, D.M., Simmons, S., Bourque, G., Curran, H.J., and Simmie, J.M. 2007. Methane/propane oxidation at high pressures: experimental and detailed chemical kinetic modeling. Proc. Combust. Inst., 31, 447–454. doi:10.1016/j.proci.2006.08.034
  • Rasmussen, C.L., and Glarborg, P. 2008. Direct partial oxidation of natural gas to liquid chemicals: chemical kinetic modeling and global optimization. Ind. Eng. Chem. Res., 47, 6579–6588. doi:10.1021/ie800137d
  • Rasmussen, C.L., Jakobsen, J.G., and Glarborg, P. 2008. Experimental measurements and kinetic modeling of CH4/O2 and CH4/C2H6/O2 conversion at high pressure. Int. J. Chem. Kinet., 40, 454–480. doi:10.1002/kin.20327
  • Rytz, D.W., and Baiker, A. 1991. Partial oxidation of methane to methanol in a flow reactor at elevated pressure. Ind. Eng. Chem. Res., 30, 2287–2292. doi:10.1021/ie00058a007
  • Sen, F., Shu, B., Kasper, T., Herzler, J., Welz, O., Fikri, M., Atakan, B., and Schulz, C. 2016. Shock-tube and plug-flow reactor study of the oxidation of fuel-rich CH4/O2 mixtures enhanced with additives. Combust. Flame, 169, 307–320. doi:10.1016/j.combustflame.2016.03.030
  • Tan, Y., Dagaut, P., Cathonnet, M., Claude Boettner, J., Sylvain Bachman, J., and Carlier, P. 1994. Natural gas and blends oxidation and ignition: experiments and modeling. Proc. Combust. Inst., 25, 1563–1569. doi:10.1016/S0082-0784(06)80801-5
  • Wiemann, S., Hegner, R., Atakan, B., Schulz, C., and Kaiser, S.A. 2018. Combined production of power and syngas in an internal combustion engine – experiments and simulations in SI and HCCI mode. Fuel, 215, 40–45. doi:10.1016/j.fuel.2017.11.002
  • Zhou, C.-W., Li, Y., Burke, U., Banyon, C., Somers, K.P., Ding, S., Khan, S., Hargis, J.W., Sikes, T., Mathieu, O., Petersen, E.L., AlAbbad, M., Farooq, A., Pan, Y., Zhang, Y., Huang, Z., Lopez, J., Loparo, Z., Vasu, S.S., and Curran, H.J. 2018. An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: ignition delay time and laminar flame speed measurements. Combust. Flame, 197, 423–438. doi:10.1016/j.combustflame.2018.08.006
  • Zhou, X., Chen, C., and Wang, F. 2010. Modeling of non-catalytic partial oxidation of natural gas under conditions found in industrial reformers. Chem. Eng. Process, 49, 59–64. doi:10.1016/j.cep.2009.11.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.