622
Views
7
CrossRef citations to date
0
Altmetric
Articles

A Comparison of Finite-Rate Kinetics and Flamelet-Generated Manifold Using a Multiscale Modeling Framework for Turbulent Premixed Combustion

, &
Pages 921-955 | Received 12 Oct 2018, Accepted 06 Feb 2019, Published online: 27 Feb 2019

References

  • Aspden, A.J., Day, M.S., and Bell, J.B. 2011. Turbulence-flame interactions in lean premixed hydrogen: transition to the distributed burning regime. J. Fluid Mech., 680, 287–320. doi:10.1017/jfm.2011.164
  • Balarac, G., Pitsch, H., and Raman, V. 2008. Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators. Phys. Fluids, 20(3), 035114. doi:10.1063/1.2896287
  • Bradley, D., Kwa, L., Lau, A., Missaghi, M., and Chin, S. 1988. Laminar flamelet modeling of recirculating premixed methane and propane-air combustion. Combust. Flame, 71(2), 109–122. doi:10.1016/0010-2180(88)90001-6
  • Bykov, V., and Maas, U. 2007. The extension of the ILDM concept to reaction–diffusion manifolds. Combust. Theory Model., 11(6), 839–862. doi:10.1080/13647830701242531
  • Colin, O., Ducros, F., Veynante, D., and Poinsot, T. 2000. A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids, 12(7), 1843–1863. doi:10.1063/1.870436
  • Cook, A.W., and Riley, J.J. 1994. A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids, 6(8), 2868–2870. doi:10.1063/1.868111
  • De Goey, L., Plessing, T., Hermanns, R., and Peters, N. 2005. Analysis of the flame thickness of turbulent flamelets in the thin reaction zones regime. Proc. Combust. Inst., 30(1), 859–866. doi:10.1016/j.proci.2004.08.016
  • Domingo, P., Vervisch, L., Payet, S., and Hauguel, R. 2005. DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame, 143(4), 566–586. doi:10.1016/j.combustflame.2005.08.023
  • Dunn, M., Masri, A., Bilger, R., Barlow, R., and Wang, G.-H. 2009. The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow. Proc. Combust. Inst., 32(2), 1779–1786. doi:10.1016/j.proci.2008.08.007
  • Dunn, M.J., Masri, M.J., and Bilger, R.W. 2007. A new piloted premixed jet burner to study strong finite rate chemistry effects. Combust. Flame, 151(1–2), 46–60. doi:10.1016/j.combustflame.2007.05.010
  • Fedina, E., and Fureby, C. 2011. A comparative study of flamelet and finite rate chemistry LES for an axisymmetric dump combustor. J. Turbul., 12, 1–20. doi:10.1080/14685248.2011.582586
  • Fureby, C. 2009. Large eddy simulation modelling of combustion for propulsion applications. Philos. Trans. A, 367(1899), 2957–2969. doi:10.1098/rsta.2008.0271
  • Fureby, C. 2012. A comparative study of flamelet and finite rate chemistry LES for a swirl stabilized flame. J. Eng. Gas Turbines Power, 134(4), 041503. doi:10.1115/1.4004718
  • Fureby, C., and Möller, S.-I. 1995. Large eddy simulation of reacting flows applied to bluff body stabilized flames. AIAA J., 33(12), 2339–2347. doi:10.2514/3.12989
  • Fureby, C., Zettervall, N., Kim, S., and Menon, S. 2015. Large eddy simulation of a simplified lean premixed gas turbine combustor. TSFP-9, P-33. Presented at the 9th International Symposium on Turbulence and Shear Flow Phenomena, Melbourne, Australia..
  • Gao, Y., Chakraborty, N., and Klein, M. 2015. Assessment of the performances of sub-grid scalar flux models for premixed flames with different global Lewis numbers: a direct numerical simulation analysis. Int. J. Heat Fluid Flow, 52, 28–39. doi:10.1016/j.ijheatfluidflow.2014.10.022
  • Génin, F., and Menon, S. 2010. Studies of shock/turbulent shear layer interaction using large-eddy simulation. Comput. Fluids, 39(5), 800–819. doi:10.1016/j.compfluid.2009.12.008
  • Germano, M., Piomelli, U., Moin, P., and Cabot, W.H. 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A, 3(7), 1760–1765. doi:10.1063/1.857955
  • Ghiasi, G., Doan, N.A.K., Swaminathan, N., Yenerdag, B., Minamoto, Y., and Tanahashi, M. 2018. Assessment of SGS closure for isochoric combustion of hydrogen-air mixture. Int. J. Hydrogen Energy, 43(16), 8105–8115. doi:10.1016/j.ijhydene.2018.02.140
  • Gicquel, O., Darabiha, N., and Thévenin, D. 2000. Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst., 28(2), 1901–1908. doi:10.1016/S0082-0784(00)80594-9
  • Goldin, G.M., and Menon, S. 1998. A comparison of scalar PDF turbulent combustion models. Combust. Flame, 113(3), 442–453. doi:10.1016/S0010-2180(97)00237-X
  • Gonzalez-Juez, E.D., Kerstein, A.R., Ranjan, R., and Menon, S. 2017. Advances and challenges in modeling high-speed turbulent combustion in propulsion systems. Prog. Energy Combust. Sci., 60, 26–67. doi:10.1016/j.pecs.2016.12.003
  • Goodwin, D.G., Moffat, H.K., and Speth, R.L. 2014. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. http://www.cantera.org.Version2.1.2
  • Granet, V., Menon, S., Vermorel, O., Staffelbach, G., Poinsot, T., and Roux, A. 2013. Large-eddy simulation of a swirled lean premixed gas turbine combustor: a comparison of two compressible codes. In AIAA Paper, pp. 2013–2171. Presented at the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, USA.
  • Grinstein, F., and Fureby, C. 2005. LES studies of the flow in a swirl gas combustor. Proc. Combust. Inst., 30(2), 1791–1798. doi:10.1016/j.proci.2004.08.082
  • Held, T., and Mongia, H. 1998. Application of a partially premixed laminar flamelet model to a low emissions gas turbine combustor. In ASME International Gas Turbine combustor. ASME paper 98-GT-217, pp. V003T06A010. Presented at ASME International Gas Turbine and Aeroengine Congress and Exhibition, Stockholm, Sweden.
  • Hura, H.S., Joshi, N.D., Mongia, H.C., and Tonouchi, J. 1998. Dry low emissions premixer CCD modeling and validation. ASME paper 98-GT-444, pp. V003T06A040. Presented at International Gas Turbine and Aeroengine Congress and Exhibition, Stockholm, Sweden.
  • Ihme, M., Cha, C.M., and Pitsch, H. 2005. Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach. Proc. Combust. Inst., 30(1), 793–800. doi:10.1016/j.proci.2004.08.260
  • Kerstein, A.R. 1989. Linear-eddy modeling of turbulent transport. II: application to shear layer mixing. Combust. Flame, 75(3–4), 397–413. doi:10.1016/0010-2180(89)90051-5
  • Kim, W.W., and Menon, S. 1999. An unsteady incompressible Navier-Stokes solver for large eddy simulation of turbulent flows. Int. J. Numer. Meth. Fluids, 31(6), 983–1017. doi:10.1002/(SICI)1097-0363(19991130)31:6<983::AID-FLD908>3.0.CO;2-Q
  • Kim, -W.-W., Menon, S., and Mongia, H.C. 1999. Large-eddy simulation of a gas turbine combustor flow. Combust. Sci. Technol., 143(1–6), 25–62. doi:10.1080/00102209908924192
  • Knudsen, E., Kim, S., and Pitsch, H. 2010. An analysis of premixed flamelet models for large eddy simulation of turbulent combustion. Phys. Fluids, 22(11), 115109. doi:10.1063/1.3490043
  • Kraichnan, R.H. 1970. Diffusion by a random velocity field. Phys. Fluids, 13(1), 22–31. doi:10.1063/1.1692799
  • Kumar, S., and Tamaru, T. 1997. Computation of turbulent reacting flow in a jet assisted ram combustor. Comp. Fluids, 26(2), 117–133. doi:10.1016/S0045-7930(96)00033-3
  • Langella, I., Chen, Z., Swaminathan, N., and Sadasivuni, S. 2018. Large-eddy simulation of reacting flows in industrial gas turbine combustor. J. Propul. Power, 34(5), 1269–1284. doi:10.2514/1.B36842
  • Langella, I., and Swaminathan, N. 2016. Unstrained and strained flamelets for LES of premixed combustion. Combust. Theory Model., 20(3), 410–440. doi:10.1080/13647830.2016.1140230
  • Li, Z.S., Li, B., Sun, Z.W., Bai, X.S., and Alden, M. 2010. Turbulence and combustion interactions: high resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH and CH2O in a piloted premixed jet flame. Combust. Flame, 157(6), 1087–1096. doi:10.1016/j.combustflame.2010.02.017
  • Lodier, G., Vervisch, L., Moureau, V., and Domingo, P. 2011. Composition-space premixed flamelet solution with differential diffusion for in-situ flamelet-generated manifolds. Combust. Flame, 158(10), 2009–2016. doi:10.1016/j.combustflame.2011.03.011
  • Ma, T., Gao, Y., Kempf, A.M., and Chakraborty, N. 2014. Validation and implementation of algebraic LES modelling of scalar dissipation rate for reaction rate closure in turbulent premixed combustion. Combust. Flame, 161(12), 3134–3153. doi:10.1016/j.combustflame.2014.05.023
  • Maas, U., and Pope, S.B. 1992. Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame, 88(3–4), 239–264. doi:10.1016/0010-2180(92)90034-M
  • Mansour, M.S., Peters, N., and Chen, Y.C. 1998. Investigation of local flame structures and statistics in partially premixed turbulent jet flames using simultaneous CH LIF/Rayleigh laser technique. Proc. Combust. Inst., 27, 767–773. doi:10.1016/S0082-0784(98)80471-2
  • Menon, S., and Kerstein, A.R. 2011. The linear-eddy model. Turbul. Combust. Model., 95, 175–222.
  • Menon, S., McMurtry, P., and Kerstein, A.R. 1993. A linear eddy mixing model for large eddy simulation of turbulent combustion. Galperin, B., and Orszag, S., Eds. LES of Complex Engineering and Geophysical Flows, Cambridge University Press, Cambridge, UK. pp. 287–314.
  • Mukhopadhyay, S., Bastiaans, R., Van Oijen, J., and De Goey, L. 2015. Analysis of a filtered flamelet approach for coarse DNS of premixed turbulent combustion. Fuel, 144, 388–399. doi:10.1016/j.fuel.2014.12.045
  • Oevermann, M. 2000. Numerical investigation of turbulent hydrogen combustion in a scramjet using flamelet modeling. Aerospace Sci. Tech., 4(7), 463–480. doi:10.1016/S1270-9638(00)01070-1
  • Patel, N., and Menon, S. 2008. Simulation of spray-turbulence-flame interactions in a lean direct injection combustor. Combust. Flame, 153(1–2), 228–257. doi:10.1016/j.combustflame.2007.09.011
  • Peters, N. 1991. Reducing mechanisms. In: Smooke M.D. (eds) Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, Lecture Notes in Physics, vol 384. Springer, pp. 48–67.
  • Peters, N. 2000. Turbulent Combustion, Cambridge University Press, Cambridge, UK.
  • Pierce, C.D., and Moin, P. 1998. A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids, 10(12), 3041–3044. doi:10.1063/1.869832
  • Pierce, C.D., and Moin, P. 2004. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech., 504, 73–97. doi:10.1017/S0022112004008213
  • Pitsch, H. 2006. Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech., 38, 453–482. doi:10.1146/annurev.fluid.38.050304.092133
  • Poinsot, T., and Veynante, D. 2005. Theoretical and Numerical Combustion, 2nd ed. Edwards, Inc. Philadelphia, PA, USA
  • Poinsot, T.J., and Lele, S.K. 1992. Boundary conditions for direct simulations of compressible viscous flows. Journal of Computational Physics, 101(1), 104–129.
  • Poludnenko, A.Y., and Oran, E.S. 2011. The interaction of high-speed turbulence with flames: global properties and internal flame structure. Combust. Flame, 157(5), 995–1011. doi:10.1016/j.combustflame.2009.11.018
  • Proch, F., and Kempf, A.M. 2014. Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry. Combust. Flame, 161(10), 2627–2646. doi:10.1016/j.combustflame.2014.04.010
  • Ranjan, R., and Menon, S. 2017. Numerical investigation of structural and statistical features of premixed flame under intense turbulence. In
  • Ranjan, R., Muralidharan, B., Nagaoka, Y., and Menon, S. 2016. Subgrid-scale modeling of reaction-diffusion and scalar transport in turbulent premixed flames. Combust. Sci. Technol., 188(9), 1496–1537. doi:10.1080/00102202.2016.1198336
  • Rittler, A., Proch, F., and Kempf, A.M. 2015. LES of the Sydney piloted spray flame series with the PFGM/ATF approach and different sub-filter models. Combust. Flame, 162(4), 1575–1598. doi:10.1016/j.combustflame.2014.11.025
  • Saghafian, A., Terrapon, V.E., and Pitsch, H. 2015. An efficient flamelet-based combustion model for compressible flows. Combust. Flame, 162(3), 652–667. doi:10.1016/j.combustflame.2014.08.007
  • Sankaran, R., Hawkes, E.R., Chen, J.H., Lu, T., and Law, C.K. 2007. Structure of a spatially developing turbulent lean methane–air Bunsen flame. Proc. Combust. Inst., 31(1), 1291–1298. doi:10.1016/j.proci.2006.08.025
  • Sankaran, V., and Menon, S. 2005. Subgrid combustion modeling of 3-D premixed flames in the thin-reaction-zone regime. Proc. Combust. Inst., 30(1), 575–582. doi:10.1016/j.proci.2004.08.023
  • Savard, B., Bobbitt, B., and Blanquart, G. 2015. Structure of a high Karlovitz n-C7H16 premixed turbulent flame. Proc. Combust. Inst., 35(2), 1377–1384. doi:10.1016/j.proci.2014.06.133
  • Savre, J., Carlsson, H., and Bai, X.S. 2013. Turbulent methane/air premixed flame structure at high Karlovitz numbers. Flow Turbul. Combust., 90(2), 325–341. doi:10.1007/s10494-012-9426-8
  • Smith, T.M., and Menon, S. 1997. One-dimensional simulations of freely propagating turbulent premixed flames. Combust. Sci. Technol., 128, 99–130. doi:10.1080/00102209708935706
  • Srinivasan, S., Ranjan, R., and Menon, S. 2015. Flame dynamics during combustion instability in a high-pressure, shear-coaxial injector combustor. Flow Turbul. Combust., 94(1), 237–262. doi:10.1007/s10494-014-9569-x
  • Swaminathan, N., Bilger, R., and Cuenot, B. 2001. Relationship between turbulent scalar flux and conditional dilatation in premixed flames with complex chemistry. Combust. Flame, 126(4), 1764–1779. doi:10.1016/S0010-2180(01)00283-8
  • Trouve, A., and Poinsot, T. 1994. The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech., 278, 1–31. doi:10.1017/S0022112094003599
  • Van Oijen, J., Bastiaans, R., and De Goey, L. 2007. Low-dimensional manifolds in direct numerical simulations of premixed turbulent flames. Proc. Combust. Inst., 31(1), 1377–1384. doi:10.1016/j.proci.2006.07.076
  • Van Oijen, J., and Goey, L.D. 2000. Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol., 161(1), 113–137. doi:10.1080/00102200008935814
  • Veynante, D., Trouvé, A., Bray, K., and Mantel, T. 1997. Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech., 332, 263–293. doi:10.1017/S0022112096004065
  • Vreman, A., Van Oijen, J., De Goey, L., and Bastiaans, R. 2009. Subgrid scale modeling in large-eddy simulation of turbulent combustion using premixed flamelet chemistry. Flow Turbul. Combust., 82(4), 511–535. doi:10.1007/s10494-008-9159-x
  • Wall, C., Boersma, B.J., and Moin, P. 2000. An evaluation of the assumed beta probability density function subgrid-scale model for large eddy simulation of nonpremixed, turbulent combustion with heat release. Phys. Fluids, 12(10), 2522–2529. doi:10.1063/1.1287911
  • Wang, H., Hawkes, E.R., Chen, J.H., Zhou, B., Li, Z., and Aldén, M. 2017. Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame–an analysis of flame stretch and flame thickening. J. Fluid Mech., 815, 511–536. doi:10.1017/jfm.2017.53
  • Yuen, F., and Gülder, Ö.L. 2009. Investigation of dynamics of lean turbulent premixed flames by Rayleigh imaging. AIAA J., 47(4), 2964–2973. doi:10.2514/1.43255

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.