171
Views
2
CrossRef citations to date
0
Altmetric
Articles

Investigation of the Jet-Flame Interaction by Large Eddy Simulation and Proper Decomposition Method

&
Pages 956-978 | Received 04 Oct 2018, Accepted 08 Feb 2019, Published online: 27 Feb 2019

References

  • Barlow, R.S., Karpetis, A.N., Frank, J.H., and Chen, J.-Y. 2001. Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combust. Flame, 127(3), 2102–2118. doi:10.1016/S0010-2180(01)00313-3.
  • Berkooz, G., Holmes, P., and Lumley, J.L. 1993. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech., 25, 539–575. doi:10.1146/annurev.fl.25.010193.002543.
  • Bulat, G., Jones, W.P., and Marquis, A.J. 2013. Large eddy simulation of an industrial gas-turbine combustion chamber using the sub-grid PDF method. Proc. Combust. Inst., 34(2), 3155–3164. doi:10.1016/j.proci.2012.07.031.
  • Cavaliere, A., and de Joannon, M. 2004. Mild combustion. Prog. Energy Combust. Sci., 30(4), 329–366. doi:10.1016/j.pecs.2004.02.003.
  • Di Domenico, M., Gerlinger, P., and Noll, B. Numerical simulations of confined, turbulent, lean, premixed flames using a detailed chemistry combustion model. Proc. ASME Turbo Expo., 2011, Paper No. GT2011-45520. doi:10.1115/GT2011-45520.
  • Dodoulas, I.A., and Navarro-Martinez, S. 2013. Large eddy simulation of premixed turbulent flames using the probability density function approach. Flow Turb. Combust., 90(3), 645–678. doi:10.1007/s10494-013-9446-z.
  • Donini, A., Martin, S.M., Bastiaans, R.J.M., van Oijen, J.A., and de Goey, L.P.H. Numerical simulations of a premixed turbulent confined jet flame using the flamelet generated manifold approach with heat loss inclusion. Proc. ASME Turbo Expo., 2013, Paper No. GT2013-94363. doi:10.1115/GT2013-94363.
  • Dopazo, C. 1975. Probability density function approach for a turbulent axisymmetric heated jet. Centerline evolution. Phys. Fluids, 18(4), 397–404. doi:10.1063/1.861163.
  • Duwig, C., and Laszlo, F. 2007. Large eddy simulation of vortex breakdown/flame interaction. Phys. Fluids, 19(7), 075103. doi:10.1063/1.2749812.
  • Gao, F., and O’Brien, E.E. 1993. A large-eddy simulation scheme for turbulent reacting flows. Phys. Fluids A, 5(6), 1282–1284. doi:10.1063/1.858617.
  • Germano, M., Piomelli, U., Moin, P., and Cabot, W.H. 1760–1765. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A, 3(7), 1991.
  • Haworth, D.C. 2010. Progress in probability density function methods for turbulent reacting flows. Prog. Ener. Combust. Sci., 36(2), 168–259. doi:10.1016/j.pecs.2009.09.003.
  • Jones, W.P., Marquis, A.J., and Noh, D. 2017. An investigation of a turbulent spray flame using large eddy simulation with a stochastic breakup model. Combust. Flame, 186, 277–298. doi:10.1016/j.combustflame.2017.08.019.
  • Jones, W.P., Marquis, A.J., and Prasad, V.N. 2012. LES of a turbulent premixed swirl burner using the Eulerian stochastic field method. Combust. Flame, 159(10), 3079–3095. doi:10.1016/j.combustflame.2012.04.008.
  • Jones, W.P., Marquis, A.J., and Wang, F. 2015. Large eddy simulation of a premixed propane turbulent bluff body flame using the Eulerian stochastic field method. Fuel, 140, 514–525. doi:10.1016/j.fuel.2014.06.050.
  • Jones, W.P., and Navarro-Martinez, S. 2007. Large eddy simulation of autoignition with a subgrid probability density function method. Combust. Flame, 150(3), 170–187. doi:10.1016/j.combustflame.2007.04.003.
  • Jones, W.P., and Prasad, V.N. 1621–1636. Large eddy simulation of the Sandia Flame Series (D-F) using the Eulerian stochastic field method. Combust. Flame, 157(9), 2010.
  • Klein, M., Sadiki, A., and Janicka, J. 2003. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comp. Phys., 186(2), 652–665. doi:10.1016/S0021-9991(03)00090-1.
  • Kolla, H., Rogerson, J.W., Chakraborty, N., and Swaminathan, N. 2009. Scalar dissipation rate modeling and its validation. Combust. Sci. Tech., 181(3), 518–535. doi:10.1080/00102200802612419.
  • Lammel, O., Stöhr, M., Kutne, P., Dem, C., Meier, W., and Aigner, M. 2012. Experimental analysis of confined jet flames by laser measurement techniques. J. Eng. Gas Turbines Powers, 134(4), 041506 doi:10.1115/1.4004733.
  • Langella, I., Swaminathan, N., Gao, Y., and Chakraborty, N. 2017. Large eddy simulation of premixed combustion: sensitivity to subgrid scale velocity modeling. Combust. Sci. Tech., 189(1), 43–78. doi:10.1080/00102202.2016.1193496.
  • Lu, T., and Law, C.K. 2008. A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry. Combust. Flame, 154(4), 761–774. doi:10.1016/j.combustflame.2008.04.025.
  • Lückerath, R., Meier, W., and Aigner, M. 2008. FLOX® combustion at high pressure with different fuel compositions. ASME. J. Eng. Gas Turbines Power, 130(1), 011505–011505–7 doi:10.1115/1.2749280.
  • Mustata, R., Valiño, L., Jiménez, C., Jones, W.P., and Bondi, S. 2006. A probability density function Eulerian Monte Carlo field method for large eddy simulations: application to a turbulent piloted methane/air diffusion flame (Sandia D). Combust. Flame, 145, 88–104. doi:10.1016/j.combustflame.2005.12.002.
  • Noh, D., Karlis, E., Navarro-Martinez, S., Hardalupas, Y., Taylor, A.M.K.P., Fredrich, D., and Jones, W.P. 2019. Azimuthally-driven subharmonic thermoacoustic instabilities in a swirl-stabilised combustor. Proc. Combust. Inst., 37(4), 5333–5341. doi:10.1016/j.proci.2018.07.090.
  • Proch, F., and Kempf, A.M. 2015. Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds. Proc. Combust. Inst., 35(3), 3337–3345. doi:10.1016/j.proci.2014.07.036.
  • Schmidt, H., and Schumann, U. 1989 Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech., 200, 511–562. doi:10.1017/S0022112089000753.
  • Semeraro, O., Bellani, G., and Lundell, F. 2012. Analysis of time-resolved PIV measurements of a confined turbulent jet using POD and Koopman modes. Exp. Fluids, 53(5), 1203–1220. doi:10.1007/s00348-012-1354-9.
  • Sirovich, L. 1987. Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math., 45(3), 561–571. doi:10.1090/qam/910462.
  • Stöhr, M., Sadanandan, R., and Meier, W. 2011. Phase-resolved characterization of vortex-flame interaction in a turbulent swirl flame. Exp. Fluids, 51(4), 1153–1167. doi:10.1007/s00348-011-1134-y.
  • Valiño, L. 1998. A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust., 60(2), 157–172. doi:10.1023/A:1009968902446.
  • Wünning, J.A., and Wünning, J.G. 1997. Flameless oxidation to reduce thermal NO-formation. Prog. Energy Combust. Sci., 23(1), 81–94. doi:10.1016/S0360-1285(97)00006-3.
  • Yang, W., and Blasiak, W. 2005. Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air. Energy, 30(2), 385–398. doi:10.1016/j.energy.2004.05.011.
  • Yin, Z., Boxx, I., and Meier, W. 2017a. Influence of self-sustained jet oscillation on a confined turbulent flame near lean blow-out. Proc. Combust. Inst., 36(3), 3773–3781. doi:10.1016/j.proci.2016.07.026.
  • Yin, Z., Boxx, I., Stöhr, M., Lammel, O., and Meier, W. 2017b. Confinement-induced instabilities in a jet-stabilized gas turbine model combustor. Flow Turbul. Combust., 98(1), 217–235. doi:10.1007/s10494-016-9750-5.
  • Yin, Z., Nau, P., Boxx, I., and Meier, W. 2015. Characterization of a single-nozzle FLOX model combustor using kHz laser diagnostics. In Proc. ASME Turbo Expo 2015, Power for Land, Sea and Air, June 15–19 Montreal, Canada. Paper No. GT2015-4328. doi:10.1115/GT2015-43282.
  • Yin, Z., Boxx, I., Stöhr, M., Lammel, O., and Meier, W. 2016. Investigation of confined turbulent jet flames using kHz-rates, 54th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, ( AIAA 2016–0185).
  • Zettervall, N., Nordin-Bates, K., Nilsson, E.J.K., and Fureby, C. 2017. Large Eddy Simulation of a premixed bluff body stabilized flame using global and skeletal reaction mechanisms. Combust. Flame, 179, 1–22. doi:10.1016/j.combustflame.2016.12.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.