1,881
Views
15
CrossRef citations to date
0
Altmetric
Articles

Lean Flame Root Dynamics in a Gas Turbine Model Combustor

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1019-1042 | Received 14 Oct 2018, Accepted 14 Feb 2019, Published online: 07 Apr 2019

References

  • Ahmed, U., Doan, N.A.K., Lai, J., Klein, M., Chakraborty, N., and Swaminathan, N. 2018. Multiscale analysis of head-on quenching premixed turbulent flames. Phys. Fluids, 30, 105102. doi:10.1063/1.5047061
  • Barlow, R.S., and Frank, J.H. 1998. Effects of turbulence on specific mass fractions in methane/air jet flames. Symp. (Int.) Combust., 27(1), 1087–1095. doi:10.1016/S0082-0784(98)80510-9
  • Barlow, R.S., Meares, S., Magnotti, G., Cutcher, H., and Masri, A.R. 2015. Local extinction and near-field structure in piloted turbulent CH4/air jet flames with inhomogeneous inlets. Combust. Flame, 162(10), 3516–3540. doi:10.1016/j.combustflame.2015.06.009
  • Benim, A.C., Iqbal, S., Meier, W., Joos, F., and Wiedermann, A. 2017. Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor. Appl. Therm. Eng., 110, 202–212. doi:10.1016/j.applthermaleng.2016.08.143
  • Bilger, R.W., Stårner, S.H., and Kee, R.J. 1990. On reduced mechanisms for methane-air combustion in nonpremixed flames. Combust. Flame, 80(2), 135–149. doi:10.1016/0010-2180(90)90122-8
  • Cavaliere, D.E., Kariuki, J., and Mastorakos, E. 2013. A comparison of the blow-off behaviour of swirl-stabilized premixed, non-premixed and spray flames. Flow Turbul. Combust, 91(2), 347–372. doi:10.1007/s10494-013-9470-z
  • Chen, Z., Ruan, S., and Swaminathan, N. 2017. Large Eddy Simulation of flame edge evolution in a spark-ignited methane-air jet. Proc. Combust. Inst, 36(2), 1645–1652. doi:10.1016/j.proci.2016.06.023
  • Chen, Z.X., Swaminathan, N., Stöhr, M., and Meier, W. 2019. Interaction between self-excited oscillations and fuel-air mixing in a dual swirl combustor. Proc. Combust. Inst, 37(2), 2325–2333. doi:10.1016/j.proci.2018.08.042
  • Dally, B.B., Masri, A.R., Barlow, R.S., and Fiechtner, G.J. 1998. Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames. Combust. Flame, 114(1–2), 119–148. doi:10.1016/S0010-2180(97)00280-0
  • Doan, N.A.K., Swaminathan, N., and Chakraborty, N. 2017. Multiscale analysis of turbulence-flame interaction in premixed flames. Proc. Combust. Inst, 36(2), 1929–1935. doi:10.1016/j.proci.2016.07.111
  • Donini, A.M., Bastiaans, R.J., van Oijen, J.A., and de Goey, L.P.H. 2017. A 5-D implementation of FGM for the large eddy simulation of a stratified swirled flame with heat loss in a gas turbine combustor. Flow Turbul. Combust, 98(3), 887–922. doi:10.1007/s10494-016-9777-7
  • Driscoll, J.F. 2011. Future directions and applications of lean premixed combustion. In Turbulent Premixed Flames (Eds. Swaminathan, N., and Bray, K.N.C.), chap. 5. pp. 378–396. Cambridge, UK: Cambridge University Press.
  • Dunstan, T.D., Minamoto, Y., Chakraborty, N., and Swaminathan, N. 2013. Scalar dissipation rate modelling for large eddy simulation of turbulent premixed flames. Proc. Combust. Inst, 34(1), 1193–1201.
  • Feikema, D., Chen, R.-H., and Driscoll, J.F. 1991. Blowout of nonpremixed flames: maximum coaxial air velocities achievable, with and without swirl. Combust. Flame, 86(4), 347–358. doi:10.1016/0010-2180(91)90128-x
  • Galindo, S., Salehi, F., Cleary, M.J., and Masri, A.R. 2017. MMC-LES simulations of turbulent piloted flames with varying levels of inlet inhomogeneity. Proc. Combust. Inst, 36(2), 1759–1766. doi:10.1016/j.proci.2016.07.055
  • Gao, Y., Chakraborty, N., and Swaminathan, N. 2015. Dynamic closure of scalar dissipation rate for Large Eddy Simulations of turbulent premixed combustion: a direct numerical simulations analysis. Flow Turbul. Combust, 95(4), 775–802. doi:10.1007/s10494-015-9631-3
  • Garmory, A., and Mastorakos, E. 2011. Capturing localised extinction in Sandia Flame F with LES-CMC. Proc. Combust. Inst, 33(1), 1673–1680. doi:10.1016/j.proci.2010.06.065
  • Gicquel, L.Y.M., Staffelbach, G., and Poinsot, T. 2012. Large Eddy Simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci, 38(6), 782–817. doi:10.1016/j.pecs.2012.04.004
  • Goodwin, D.G., Moffat, H.K., and Speth, R.L. 2017 Cantera: an Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes.
  • Ihme, M., and Pitsch, H. 2008. Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 2. Application in LES of Sandia flames D and E. Combust. Flame, 155(1–2), 90–107. doi:10.1016/j.combustflame.2008.04.001
  • Issa, R.I. 1986. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys, 62(1), 40–65. doi:10.1016/0021-9991(86)90099-9
  • Jones, W.P., and Prasad, V.N. 2010. Large Eddy Simulation of the Sandia Flame Series (D–F) using the Eulerian stochastic field method. Combust. Flame, 157(9), 1621–1636. doi:10.1016/j.combustflame.2010.05.010
  • Kronenburg, A., and Kostka, M. 2005. Modeling extinction and reignition in turbulent flames. Combust. Flame, 143(4), 342–356. doi:10.1016/j.combustflame.2005.08.021
  • Langella, I., Chen, Z.X., Swaminathan, N., and Sadasivuni, S.K. 2018. Large-Eddy Simulation of reacting flows in industrial gas turbine combustor. J. Propuls. Power, 34(5), 1269–1284. doi:10.2514/1.b36842
  • Langella, I., Swaminathan, N., Gao, Y., and Chakraborty, N. 2015. Assessment of dynamic closure for premixed combustion large eddy simulation. Combust. Theory. Model, 19(5), 628–656. doi:10.1080/13647830.2015.1080387
  • Langella, I., Swaminathan, N., and Pitz, R.W. 2016. Application of unstrained flamelet SGS closure for multi-regime premixed combustion. Combust. Flame, 173, 161–178. doi:10.1016/j.combustflame.2016.08.025
  • Ma, P.C., Wu, H., Labahn, J.W., Jaravel, T., and Ihme, M. 2019. Analysis of transient blow-out dynamics in a swirl-stabilized combustor using large-eddy simulations. Proc. Combust. Inst, 37(4), 5073–5082. doi:10.1016/j.proci.2018.06.066
  • Masri, A.R. 2015. Partial premixing and stratification in turbulent flames. Proc. Combust. Inst, 35(2), 1115–1136. doi:10.1016/j.proci.2014.08.032
  • Massey, J.C., Langella, I., and Swaminathan, N. 2018. Large Eddy Simulation of a bluff body stabilised premixed flame using flamelets. Flow Turbul. Combust, 101(4), 973–992. doi:10.1007/s10494-018-9948-9
  • Meares, S., and Masri, A.R. 2014. A modified piloted burner for stabilizing turbulent flames of inhomogeneous mixtures. Combust. Flame, 161(2), 484–495. doi:10.1016/j.combustflame.2013.09.016
  • Meier, W., Duan, X.R., and Weigand, P. 2006. Investigations of swirl flames in a gas turbine model combustor: II. Turbulence-chemistry interactions. Combust. Flame, 144(1–2), 225–236. doi:10.1016/j.combustflame.2005.07.009
  • Pitsch, H. 2006. Large-Eddy Simulation of turbulent combustion. Annu. Rev. Fluid Mech, 38(1), 453–482. doi:10.1146/annurev.fluid.38.050304.092133
  • Pitsch, H., and Steiner, H. 2000. Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids, 12(10), 2541–2554. doi:10.1063/1.1288493
  • Poinsot, T., and Veynante, D. 2012. Theoretical and Numerical Combustion, 3rd. France, (n.p.).
  • Pope, S.B. 2000. Turbulent Flows, Cambridge University Press, Cambridge, UK.
  • Ruan, S., Swaminathan, N., and Darbyshire, O. 2014. Modelling of turbulent lifted jet flames using flamelets: a priori assessment and a posteriori validation. Combust. Theory. Model, 18(2), 295–329. doi:10.1080/13647830.2014.898409
  • See, Y.C., and Ihme, M. 2015. Large eddy simulation of a partially-premixed gas turbine model combustor. Proc. Combust. Inst, 35(2), 1225–1234 doi:10.1016/j.proci.2014.08.006.
  • Shanbhogue, S.J., Husain, S., and Lieuwen, T.C. 2009. Lean blowoff of bluff body stabilized flames: scaling and dynamics. Prog. Energy Combust. Sci, 35(1), 98–120. doi:10.1016/j.pecs.2008.07.003
  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Mon. Weather Rev, 91(3), 99–164. doi:10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
  • Steinberg, A.M., Boxx, I., Stöhr, M., Meier, W., and Carter, C.D. 2012. Effects of flow structure dynamics on thermoacoustic instabilities in swirl-stabilized combustion. AIAA J, 50(4), 952–967. doi:10.2514/1.j051466
  • Stöhr, M., Boxx, I., Carter, C., and Meier, W. 2011. Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor. Proc. Combust. Inst, 33(2), 2953–2960. doi:10.1016/j.proci.2010.06.103
  • Syred, N. 2006. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci, 32(2), 93–161. doi:10.1016/j.pecs.2005.10.002
  • Wandel, A.P., and Lindstedt, R.P. 2013. Hybrid multiple mapping conditioning modeling of local extinction. Proc. Combust. Inst, 34(1), 1365–1372. doi:10.1016/j.proci.2012.07.073
  • Weigand, P., Meier, W., Duan, X.R., Stricker, W., and Aigner, M. 2006. Investigations of swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature, and species distributions. Combust. Flame, 144(1–2), 205–224. doi:10.1016/j.combustflame.2005.07.010
  • Wu, H., and Ihme, M. 2016. Compliance of combustion models for turbulent reacting flow simulations. Fuel, 186, 853–863. doi:10.1016/j.fuel.2016.07.074
  • Xu, J., and Pope, S.B. 2000. PDF calculations of turbulent nonpremixed flames with local extinction. Combust. Flame, 123(3), 281–307. doi:10.1016/s0010-2180(00)00155-3
  • Zhang, H., Garmory, A., Cavaliere, D.E., and Mastorakos, E. 2015. Large Eddy Simulation/Conditional moment closure modeling of swirl-stabilized non-premixed flames with local extinction. Proc. Combust. Inst, 35(2), 1167–1174. doi:10.1016/j.proci.2014.05.052
  • Zhang, H., and Mastorakos, E. 2016. Prediction of global extinction conditions and dynamics in swirling non-premixed flames using LES/CMC Modelling. Flow Turbul. Combust, 96(4), 863–889. doi:10.1007/s10494-015-9689-y
  • Zhang, H., and Mastorakos, E. 2018. LES/CMC modelling of a gas turbine model combustor with quick fuel mixing. Flow. Turbul. Combust, (In Press). 1–22. doi:10.1007/s10494-018-9988-1