249
Views
16
CrossRef citations to date
0
Altmetric
Articles

Expandable Graphite in Polyethylene: The Effect of Modification, Particle Size and the Synergistic Effect with Ammonium Polyphosphate on Flame Retardancy, Thermal Stability and Mechanical Properties

, , &
Pages 575-591 | Received 31 Aug 2018, Accepted 16 Feb 2019, Published online: 07 Mar 2019

References

  • Ebert, L.B. 1976. Intercalation compounds of graphite. Annual. Rev. Mater. Sci., 6, 181. doi:10.1146/annurev.ms.06.080176.001145
  • Feng, F.F., and Qian, L.J. 2014. Effect of the particle size and synergistic effect of expandable graphite and dimethyl methylphosphonate in rigid polyurethane foams. Polym. Composite., 35, 301. doi:10.1002/pc.22662
  • Gao, H.L., Hu, S., Han, H.C., and Zhang, J. 2011. Effect of different metallic hydroxides on flame-retardant properties of low density polyethylene/melamine polyphosphate/starch composites. J. Appl. Polym. Sci., 122, 3263. doi:10.1002/app.34398
  • Gao, L.P., Zheng, G.Y., Zhou, Y.H., Hu, L.H., Feng, G.D., and Xie, Y.L. 2013. Synergistic effect of expandable graphite, melamine polyphosphate and layered double hydroxide on improving the fire behavior of rosin-based rigid polyurethane foam. Ind. Crop. Prod., 50, 638. doi:10.1016/j.indcrop.2013.07.050
  • Ge, L.L., Duan, H.J., Zhang, X.G., Chen, C., Tang, J.H., and Li, Z.M. 2012. Synergistic effect of ammonium polyphosphate and expandable graphite on flame‐retardant properties of acrylonitrile‐butadiene‐styrene. J Appl. Polym. Sci., 126, 1337. doi:10.1002/app.36997
  • Goberis, S., Pundene, I., and Antonovich, V. 2005. The effect of sodium tripolyphosphate on the properties of medium-cement refractory castables based on Gorkal-40 cement. Refract. Ind. Ceram., 46, 403. doi:10.1007/s11148-006-0035-8
  • Huang, J.D., Tang, Q.Q., Liao, W.B., Wang, G.C., Wei, W., and Li, C.Z. 2017. Green preparation of expandable graphite and its application in flame-resistance polymer elastomer. Ind. Eng. Chem. Res., 56, 5253. doi:10.1021/acs.iecr.6b04860
  • Huang, Q., Sun, H.G., and Yang, Y.H. 2011. Spectral characterization and analysis of graphite oxide. Chinese J. Inorg. Chem., 9, 1721.
  • Inagaki, N., Onishi, H., Kunisada, H., and Katsuura, K. 1977. Flame retardancy effects of halogenated phosphates on poly(ethylene terephthalate) fabric. J. Appl. Polym. Sci., 21, 217. doi:10.1002/app.1977.070210119
  • Kalali, E.N., Montes, A., Wang, X., Zhang, L., Shabestari, M.E., Li, Z., and Wang, D.Y. 2018. Effect of phytic acid-modified layered double hydroxide on flammability and mechanical properties of intumescent flame retardant polypropylene system. Fire Mater., 42, 213. doi:10.1002/fam.2482
  • Kemmlein, S., Hahn, O., and Jann, O. 2003. Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials. Atmos. Environ., 37, 5485. doi:10.1016/j.atmosenv.2003.09.025
  • Koo, J.H., Venumbaka, S., Cassidy, P.E., Fitch, J.W., Grand, A.F., and Bundick, J. 2000. Flammability studies of thermally resistant polymers using cone calorimetry. Fire Mater., 24, 209. doi:10.1002/1099-1018(200009/10)24:5<209::AID-FAM740>3.0.CO;2-B
  • Kruger, H.J., Focke, W.W., Mhike, W., Taute, A., and Roberson, A. 2017. Thermal properties of polyethylene flame retarded with expandable graphite and intumescent fire retardant additives. Fire Mater., 41, 573. doi:10.1002/fam.2387
  • Liu, J.C., Zhang, Y.B., Yu, Z.L., Yang, W.Y., Luo, J., Pan, B.L., and Lu, C. 2016. Enhancement of organoclay on thermal and flame retardant properties of polystyrene/magnesium hydroxide composite. Polym. Composite., 37, 746. doi:10.1002/pc.23231
  • Liu, S.M., Huang, J.Y., Jiang, Z.J., Zhang, C., Zhao, J.Q., and Chen, J. 2010. Flame retardance and mechanical properties of a polyamide 6/polyethylene/surface-modified metal hydroxide ternary composite via a master-batch method. J. Appl. Polym. Sci., 117, 3370.
  • Liu, Y.L., He, J.Y., and Yang, R.J. 2015. Effects of dimethyl methylphosphonate, aluminum hydroxide, ammonium polyphosphate, and expandable graphite on the flame retardancy and thermal properties of polyisocyanurate-polyurethane foams. Ind. Eng. Chem. Res., 54, 5876. doi:10.1021/acs.iecr.5b01019
  • Lorenzetti, A., Dittrich, B., Schartel, B., Roso, M., and Modesti, M. 2017. Expandable graphite in polyurethane foams: the effect of expansion volume and intercalants on flame retardancy. J. Appl. Polym. Sci., 45173. doi:10.1002/app.45173
  • Melezhyk, A., Galunin, E., and Memetov, N. 2015. Obtaining graphene nanoplatelets from various graphite intercalation compounds. Mater. Sci. Eng., 98, 012041.
  • Menachem, L. 2001. Synergism and catalysis in flame retardancy of polymers. Polym. Advan. Technol., 12, 215. doi:10.1002/pat.132
  • Ming, G., Chen, S., Sun, Y.J., and Wang, Y.X. 2017. Flame retardancy and thermal properties of flexible polyurethane foam containing expanded graphite. Combust. Sci. Technol., 189, 793. doi:10.1080/00102202.2016.1251910
  • Nguyen, T.M.D., Chang, S.C., Condon, B., Uchimiya, M., Graves, E., Smith, J., Easson, M., and Wakelyn, P. 2012. Synthesis and characterization of a novel phosphorus-nitrogen-containing flame retardant and its application for textile. Polym. Advan. Techn., 23, 1036. doi:10.1002/pat.2008
  • Pang, X.Y., Shi, X.Z., Kang, X.O., Duan, M.W., and Weng, M.Q. 2016. Preparation of borate-modified expandable graphite and its flame retardancy on acrylonitrile-butadiene-styrene resin. Polym. Composite., 37, 2673. doi:10.1002/pc.23461
  • Pang, X.Y., Tian, Y., Duan, M.W., and Zhai, M. 2013. Preparation of low initial expansion temperature expandable graphite and its flame retardancy for LLDPE. Cent. Eur. J. Chem., 11, 953.
  • Pang, X.Y., Tian, Y., and Weng, M.Q. 2015. Preparation of expandable graphite with silicate assistant intercalation and its effect on flame retardancy of ethylene vinyl acetate composites. Polym. Composite., 36, 1407. doi:10.1002/pc.23047
  • Redondo-Foj, B., Ortiz-Serna, P., Carsí, M., Sanchis, M.J., Culebras, M., Gómez, C.M., and Cantarero, A. 2015. Electrical conductivity properities of expanded graphite-polycarbonnatediol polyurethane composites. Polym. Inter., 64, 284. doi:10.1002/pi.4788
  • Seefeldt, H., Braun, U., and Wagner, M.H. 2012. Residue stabilization in the fire retardancy of wood-plastic composites: combination of ammonium polyphosphate, expandable graphite, and red phosphorus. Macromol. Chem. Phys., 213, 2370. doi:10.1002/macp.201200119
  • Sen, A.K., Mukheriece, B., Bhattacharya, A.S., Sanghi, L.K., De, P.P., and Bhowmick, K. 1991. Preparation and characterization of low-halogen and nonhalogen fire-resistant low-smoke (FRLS) cable sheathing compound from blends of functionalized polyolefins and PVC. J. Appl. Polym. Sci., 43, 1673. doi:10.1002/app.1991.070430910
  • Shen, M.Y., Chen, W.J., Tsai, K.C., Kuan, C.F., Kuan, H.C., Chou, H.W., and Chiang, C.L. 2017. Preparation of expandable graphite and its flame retardant properties in HDPE composites. Polym. Composite., 38, 2378. doi:10.1002/pc.23820
  • Shioyam, H., and Fujii, R. 1987. Electrochemical reactions of stage 1 sulfuric acid-graphite intercalation compound. Carbon, 25, 771. doi:10.1016/0008-6223(87)90149-7
  • Sun, Z.D., Ma, Y.H., Xu, Y., Chen, X.L., Chen, M., Yu, J., Hu, S.C., and Zhang, Z.B. 2014. Effect of the particle size of expandable graphite on the thermal stability, flammability, and mechanical properties of high-density polyethylene/ethylene vinyl-acetate/expandable graphite composites. Polym. Eng. Sci., 54, 1162. doi:10.1002/pen.23659
  • Tang, M.Q., Chen, M., Xu, Y., Chen, X.L., Sun, Z.D., and Zhang, Z.B. 2015. Combustion characteristics and synergistic effects of red phosphorus master batch with expandable graphite in the flame retardant HDPE/EVA composites. Polym. Eng. Sci., 12, 2884. doi:10.1002/pen.24180
  • Uzma, K.M.A., and Sailaja, R.R.N. 2017. Mechanical and flammability characteristics of PC/ABS composites loaded with flyash cenospheres and multiwalled carbon nanotubes. Polym. Composite., 38, 1043. doi:10.1002/pc.23667
  • Wang, C., Wu, Y.C., Li, Y.C., Shao, Q., Yan, X.R., Han, C., Wang, Z., Liu, Z., and Guo, Z.H. 2018. Flame‐retardant rigid polyurethane foam with a phosphorus‐nitrogen single intumescent flame retardant. Polym. Adv. Technol., 29, 668. doi:10.1002/pat.4105
  • Wang, X., Hu, Y., Song, L., Xing, W.Y., and Lu, H.D. 2010. Thermal degradation behaviors of epoxy resin/poss hybrids and phosphorus-silicon synergism of flame retardancy. J. Polym. Sci. Poly. Phys., 48, 693. doi:10.1002/polb.21939
  • Wilke, A., Langfeld, K., Ulmer, B., Andrievici, V., Hörold, A., Limbach, P., Bastian, M., and Schartel, B. 2017. Halogen-free multicomponent flame retardant thermoplastic styrene-thylene-butylene-styrene elastomers based on ammonium polyphosphate-expandable graphite synergy. Ind. Eng. Chem. Res., 56, 8251. doi:10.1021/acs.iecr.7b01177
  • Wit, C.A. 2002. An overview of brominated flame retardants in the environment. Chemosphere, 46, 583. doi:10.1016/S0045-6535(01)00225-9
  • Zhai, Z.X., Pang, X.Y., Lin, R.N., Sun, S.Y., and Weng, M.Q. 2015. Preparation and characteristics of expandable graphite with sodium tripolyphosphate assistant intercalation. Asian J. Chem., 27, 2971. doi:10.14233/ajchem.2015.18340
  • Zhang, Y., Chen, X.L., and Fang, Z.P. 2013. Synergistic effects of expandable graphite and ammonium polyphosphate with a new carbon source derived from biomass in flame retardant ABS. J. Appl. Polym. Sci., 128, 2424. doi:10.1002/app.38382
  • Zhao, H., Zhou, W., Cao, N.Z., Shen, W.C., and Zheng, Y.P. 2002. Pore structure of exfoliated graphite and its varieties of liquid sorption. Chinese Mater. Sci. Eng., 20, 153.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.