491
Views
6
CrossRef citations to date
0
Altmetric
Articles

Numerical Analysis of Lifted Spray Flames in Various Coflow Conditions

, , &
Pages 680-700 | Received 14 Sep 2018, Accepted 03 Mar 2019, Published online: 21 Mar 2019

References

  • Aithal, S.M. 2010. Modeling of NOx formation in diesel engines using finite-rate chemical kinetics. Appl. Ene., 87, 2256. doi: 10.1016/j.apenergy.2010.01.011.
  • Al-Noman, S.M., Choi, S.K., and Chung, S.H. 2015. Auto-ignition characteristics of laminar lifted jet flames of pre-vaporized iso-octane in heated coflow air. Fuel., 162, 171. doi: 10.1016/j.fuel.2015.09.006.
  • Arghode, V.K., Khalil, A.E., and Gupta, A.K. 2012. Fuel dilution and liquid fuel operational effects on ultra-high thermal intensity distributed combustor. Appl. Ene., 95, 132. doi: 10.1016/j.apenergy.2012.02.020.
  • Cavaliere, A., and de Joannon, M. 2004. Mild combustion. Prog. Energy Combust. Sci., 30, 329. doi: 10.1016/j.pecs.2004.02.003.
  • Chen, Z., Reddy, V.M., Ruan, S., Doan, N.A.K., Roberts, W.L., and Swaminathan, N. 2017. Simulation of MILD combustion using Perfectly Stirred Reactor model. Proc. Combust. Inst., 36, 4279. doi: 10.1016/j.proci.2016.06.007.
  • Cho, E.S., Danon, B., De Jong, W., and Roekaerts, D.J.E.M. 2011. Behavior of a 300 kWth regenerative multi-burner flameless oxidation furnace. Appl. Ene., 88, 4952. doi: 10.1016/j.apenergy.2011.06.039.
  • Choi, J.H., Shin, W.J., Lee, W.J., and Choi, B.C. 2017. Auto ignited laminar lifted flames of propene in heated coflow jets: dependence on ignition delay time. Fuel., 206, 307. doi: 10.1016/j.fuel.2017.06.001.
  • Christo, F.C., and Dally, B.B. 2005. Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combus. Flame., 142, 117. doi: 10.1016/j.combustflame.2005.03.002.
  • Dally, B.B., Karpetis, A.N., and Barlow, R.S. 2002. Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc. Combust. Inst., 29, 1147. doi: 10.1016/S1540-7489(02)80145-6.
  • De Joannon, M., Cavaliere, A., Faravelli, T., Ranzi, E.L.I.S.E.O., Sabia, P., and Tregrossi, A. 2005. Analysis of process parameters for steady operations in methane mild combustion technology. Proc. Combust. Inst., 30, 2605. doi: 10.1016/j.proci.2004.08.190.
  • De Joannon, M., Matarazzo, A., Sabia, P., and Cavaliere, A. 2007. Mild combustion in homogeneous charge diffusion ignition (HCDI) regime. Proc. Combust. Inst., 31, 3409. doi: 10.1016/j.proci.2006.07.039.
  • Derudi, M., and Rota, R. 2011. Experimental study of the mild combustion of liquid hydrocarbons. Proc. Combust. Inst., 33, 3325. doi: 10.1016/j.proci.2010.06.120.
  • Evans, M.J., Medwell, P.R., Wu, H., Stagni, A., and Ihme, M. 2017. Classification and lift-off height prediction of non-premixed MILD and autoignitive flames. Proc. Combust. Inst., 36, 4297. doi: 10.1016/j.proci.2016.06.013.
  • Gan, Y., Tong, Y., Jiang, Z., Chen, X., Li, H., and Jiang, X. 2018. Electro-spraying and catalytic combustion characteristics of ethanol in meso-scale combustors with steel and platinum meshes. Energ. Convers. Manage., 164, 410. doi: 10.1016/j.enconman.2018.03.018.
  • Higgins, B., and Siebers, D.L., 2001. Measurement of the flame lift-off location on DI diesel sprays using OH chemiluminescence (No. 2001-01-0918). SAE Tech. Paper.
  • Hosseini, S.E., and Wahid, M.A. 2014. Enhancement of exergy efficiency in combustion systems using flameless mode. Energ. Convers. Manage., 86, 1154. doi: 10.1016/j.enconman.2014.06.065.
  • Howard, J.B., Williams, G.C., and Fine, D.H., 1973. Kinetics of carbon monoxide oxidation in postflame gases. Symposium (International) on Combustion, Pennsylvania State University, United States, 14, 975.
  • Huang, M., Zhang, Z., Shao, W., Xiong, Y., Liu, Y., Lei, F., and Xiao, Y. 2014. Effect of air preheat temperature on the MILD combustion of syngas. Energ. Convers. Manage.., 86, 356. doi: 10.1016/j.enconman.2014.05.038.
  • Katsuki, M., and Hasegawa, T. 1998 January. The science and technology of combustion in highly preheated air. Proc. Combust. Inst., 27, 3135. doi: 10.1016/S0082-0784(98)80176-8.
  • Kruse, S., Kerschgens, B., Berger, L., Varea, E., and Pitsch, H. 2015. Experimental and numerical study of MILD combustion for gas turbine applications. Appl. Energy., 148, 456. doi: 10.1016/j.apenergy.2015.03.054.
  • Kumar, S., Paul, P.J., and Mukunda, H.S. 2002. Studies on a new high-intensity low-emission burner. Proc. Combust. Inst., 29, 1131. doi: 10.1016/S1540-7489(02)80143-2.
  • Launder, B.E., and Sharma, B.I. 1974. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Trans., 1, 131. doi: 10.1016/0094-4548(74)90150-7.
  • Launder, B.E., and Spalding, D.B. 1972. Mathematical Models of Turbulence. London: Academic Press.
  • Lawn, C.J. 2009. Lifted flames on fuel jets in co-flowing air. Progr. Energ. Combust. Sci.., 35, 1. doi: 10.1016/j.pecs.2008.06.003.
  • Ma, L., and Roekaerts, D. 2016. Structure of spray in hot-diluted coflow flames under different coflow conditions: a numerical study. Combust. Flame., 172, 20. doi: 10.1016/j.combustflame.2016.06.017.
  • Ma, L., and Roekaerts, D. 2017. Numerical study of the multi-flame structure in spray combustion. Proc. Combust. Inst.., 36, 2603. doi: 10.1016/j.proci.2016.06.015.
  • Manna, P., Dharavath, M., Sinha, P.K., and Chakraborty, D. 2013. Optimization of a flight-worthy scramjet combustor through CFD. Aerosp. Sci. Technol., 27, 138. doi: 10.1016/j.ast.2012.07.005.
  • Marley, S.K., Lyons, K.M., and Watson, K.A. 2004a. Leading-edge reaction zones in lifted-jet gas and spray flames. Flow Turbul. Combust., 72, 29. doi: 10.1023/B:APPL.0000014906.91990.4e.
  • Marley, S.K., Welle, E.J., Lyons, K.M., and Roberts, W.L. 2004b. Effects of leading edge entrainment on the double flame structure in lifted ethanol spray flames. Exp. Therm. Fluid Sci., 29, 23. doi: 10.1016/j.expthermflusci.2004.01.009.
  • Medwell, P.R., and Dally, B.B. 2012. Effect of fuel composition on jet flames in a heated and diluted oxidant stream. Combust. Flame., 159, 3138. doi: 10.1016/j.combustflame.2012.04.012.
  • Minamoto, Y., Swaminathan, N., Cant, S.R., and Leung, T. 2014. Morphological and statistical features of reaction zones in MILD and premixed combustion. Combust. Flame., 161, 2801. doi: 10.1016/j.combustflame.2014.04.018.
  • Oldenhof, E., Tummers, M.J., Van Veen, E.H., and Roekaerts, D.J.E.M. 2010. Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames. Combust. Flame.., 157, 1167. doi: 10.1016/j.combustflame.2010.01.002.
  • Perrone, D., and Amelio, M. 2016. Numerical investigation of oxy-mild combustion of pulverized coal in a pilot furnace. Energy Procedia., 101, 1191. doi: 10.1016/j.egypro.2016.11.161.
  • Potdar, U., Jamgade, A., Mahyavanshi, P., Yoon, Y., and Kumar, S. 2017. Experimental investigations on stabilization mechanism of lifted kerosene spray flames. Combust. Sci. Technol., 189, 1241. doi: 10.1080/00102202.2017.1280482.
  • Reddy, V.M., Katoch, A., Roberts, W.L., and Kumar, S. 2015. Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels. Proc. Combust. Inst., 35, 3581. doi: 10.1016/j.proci.2014.05.070.
  • Reddy, V.M., Sawant, D., Trivedi, D., and Kumar, S. 2013. Studies on a liquid fuel based two stage flameless combustor. Proc. Combust. Inst., 34, 3319. doi: 10.1016/j.proci.2012.06.028.
  • Reddy, V.M., Trivedi, D., and Kumar, S. 2012. Experimental investigations on lifted spray flames for a range of coflow conditions. Combust. Sci. Technol., 184, 44. doi: 10.1080/00102202.2011.615770.
  • Reitz, R.D., Corcione, F.E., and Valentino, G. 1996. Interpretation of k-ε computed turbulence length-scale predictions for engine flows. Proc. Combust. Inst., 26, 2717. doi: 10.1016/S0082-0784(96)80108-1.
  • Rodrigues, H.C., Tummers, M.J., Van Veen, E.H., and Roekaerts, D.J.E.M. 2015. Effects of coflow temperature and composition on ethanol spray flames in hot-diluted coflow. Int. J Heat Fluid Fl., 51, 309. doi: 10.1016/j.ijheatfluidflow.2014.10.006.
  • Sharma, S., Kumar, R., Chowdhury, A., Yoon, Y., and Kumar, S. 2017. On the effect of spray parameters on CO and NOx emissions in a liquid fuel fired flameless combustor. Fuel., 199, 229. doi: 10.1016/j.fuel.2017.02.102.
  • Sharma, S., Pingulkar, H., Chowdhury, A., and Kumar, S. 2018. A new emission reduction approach in MILD combustion through asymmetric fuel injection. Combust. Flame., 193, 61. doi: 10.1016/j.combustflame.2018.03.008.
  • Turns, S.R. 2012. An Introduction to Combustion. 3rd. (ed) McGraw Hill, Boston.
  • Weber, R., Smart, J.P., and Vd Kamp, W. 2005. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. Proc. Combust. Inst., 30, 2623. doi: 10.1016/j.proci.2004.08.101.
  • Winklhofer, E., Fuchs, H., and Philipp, H. 1993. Diesel spray combustion-an optical imaging analysis. SAE Trans., 102, 1154; Retrieved from http://www.jstor.org/stable/44611450.
  • Wünning, J.A., and Wünning, J.G. 1997. Flameless oxidation to reduce thermal NO-formation. Progr. Energ. Combust. Sci., 23, 81. doi: 10.1016/S0360-1285(97)00006-3.
  • Ye, J., Medwell, P.R., Dally, B.B., and Evans, M.J. 2016. The transition of ethanol flames from conventional to MILD combustion. Combust. Flame., 171, 173. doi: 10.1016/j.combustflame.2016.05.020.
  • Ye, J., Medwell, P.R., Evans, M.J., and Dally, B.B. 2017. Characteristics of turbulent n-heptane jet flames in a hot and diluted coflow. Combust. Flame., 183, 330. doi: 10.1016/j.combustflame.2017.05.027.
  • Ye, J., Medwell, P.R., Kleinheinz, K., Evans, M.J., Dally, B.B., and Pitsch, H.G. 2018. Structural differences of ethanol and DME jet flames in a hot diluted coflow. Combust. Flame., 192, 473. doi: 10.1016/j.combustflame.2018.02.025.
  • Ye, J., Medwell, P.R., Varea, E., Kruse, S., Dally, B.B., and Pitsch, H.G. 2015. An experimental study on MILD combustion of prevaporised liquid fuels. Appl. Energy., 151, 93. doi: 10.1016/j.apenergy.2015.04.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.