188
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effect of Molecular Structure on Laminar Flame Speeds of Three C5 Alkenes

&
Pages 728-743 | Received 07 Dec 2018, Accepted 04 Mar 2019, Published online: 24 Mar 2019

References

  • Alatorre, G.G., Böhm, H., Atakan, B., and Kohse-Höinghaus, K. 2001. Experimental and modelling study of 1-pentene combustion at fuel-rich conditions. Z. Phys. Chem., 215, 981.
  • Andrae, J.C.G. 2008. Development of a detailed kinetic model for gasoline surrogate fuels. Fuel, 87, 2013–2022. doi:10.1016/j.fuel.2007.09.010.
  • Blanksby, S., and Ellison, G. 2003. Bond dissociation energies of organic molecules. Cheminf., 34, 255–263. doi:10.1002/(ISSN)1522-2667.
  • Bugler, J., Marks, B., Mathieu, O., Archuleta, R., Camou, A., Grégoire, C., et al. 2016. An ignition delay time and chemical kinetic modeling study of the pentane isomers. Combust. Flame., 163, 138–156. doi: 10.1016/j.combustflame.2015.09.014.
  • Cheng, Y., Hu, E., Deng, F., Yang, F., and Huang, Z. 2015. Shock tube and kinetic study of 1-pentene and N-pentane. ASPACC 2015-10th Asia-Pacific Conference on Combustion, Beijing, China.
  • Cheng, Y., Hu, E., Deng, F., Yang, F., Zhang, Y., Tang, C., et al. 2016. Experimental and kinetic comparative study on ignition characteristics of 1-pentene and n-pentane. Fuel, 172, 263–272. doi: 10.1016/j.fuel.2016.01.008.
  • Cheng, Y., Hu, E., Lu, X., Li, X., Gong, J., Li, Q., and Huang, Z. 2017. Experimental and kinetic study of pentene isomers and n -pentane in laminar flames. Proc. Combust. Inst., 36, 1279–1286. doi:10.1016/j.proci.2016.08.026.
  • Curran, H.J., Pitz, W.J., Westbrook, C.K., Callahan, G.V., and Dryer, F.L. 1998. Oxidation of automotive primary reference fuels at elevated pressures. Symp. (Int.) Combust., 27, 379–387. doi:10.1016/S0082-0784(98)80426-8.
  • Denisov, E. T., and Denisova, T. G. 1995. Handbook of Antioxidants: Bond Dissociation Energies, Rate Constants, Activation Energies, and Enthalpies of Reactions, Boca Raton, Fla: CRC Press.
  • Farrell, J.T., Johnston, R.J., and Androulakis, I.P. 2004. Molecular structure effects on laminar burning velocities at elevated temperature and pressure. SAE Transactions, 113, 1404–1425.
  • Ji, C., Sarathy, S.M., Veloo, P.S., Westbrook, C.K., and Egolfopoulos, F.N. 2012. Effects of fuel branching on the propagation of octane isomers flames. Combust. Flame., 159, 1426–1436. doi:10.1016/j.combustflame.2011.12.004.
  • Kelley, A.P., and Law, C.K. 2009. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames. Combust. Flame., 156, 1844–1851. doi:10.1016/j.combustflame.2009.04.004.
  • Kukkadapu, G., Kumar, K., Sung, C.J., Mehl, M., and Pitz, W.J. 2012. Experimental and surrogate modeling study of gasoline ignition in a rapid compression machine. Combust. Flame., 159, 3066–3078. doi:10.1016/j.combustflame.2012.05.008.
  • Lossing, F.P., and Traeger, J.C. 1976. Free radicals by mass spectrometry XLVI. Heats of formation of C5H7and C5H9 radicals and cations. Int. J. Mass. Spectrom. Ion Phys., 19, 9–22. doi:10.1016/0020-7381(76)83002-1.
  • Mehl, M., Pitz, W.J., Westbrook, C.K., and Curran, H.J. 2011. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc. Combust. Inst., 33, 193–200. doi:10.1016/j.proci.2010.05.027.
  • Minetti, R., Roubaud, A., Therssen, E., Ribaucour, M., and Sochet, L.R. 1999. The chemistry of pre-ignition of n-pentane and 1-pentene. Combust. Flame., 118, 213–220. doi:10.1016/S0010-2180(98)00151-5.
  • Morgan, N., Smallbone, A., Bhave, A., Kraft, M., Cracknell, R., and Kalghatgi, G. 2010. Mapping surrogate gasoline compositions into RON/MON space. Combust. Flame., 157, 1122–1131. doi:10.1016/j.combustflame.2010.02.003.
  • Naik, C.V., Puduppakkam, K.V., Modak, A., Meeks, E., Wang, Y.L., Feng, Q., and Tsotsis, T.T. 2011. Detailed chemical kinetic mechanism for surrogates of alternative jet fuels. Combust. Flame., 158, 434–445. doi:10.1016/j.combustflame.2010.09.016.
  • Pedley, J.B., Naylor, R.D., and Kirby, S.P. 1986. Thermochemical Data of Organic Compounds, London, U.K: Chapman and Hall/CRC Press.
  • Pera, C., and Knop, V. 2011. Methodology to define gasoline surrogates dedicated to auto-ignition in engines. Fuel, 90, 59–69.
  • Ra, Y., and Reitz, R.D. 2008. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels. Combust. Flame., 155, 713–738. doi:10.1016/j.combustflame.2008.05.002.
  • Ribaucour, M., Minetti, R., and Sochet, L.R. 1998. Autoignition of n -pentane and 1-pentene: experimental data and kinetic modeling. Symp. (Int.) Combust., 27, 345–351. doi:10.1016/S0082-0784(98)80422-0.
  • Ruwe, L., Kai, M., Hansen, N., and Kohse-Höinghaus, K. 2017. Consumption and hydrocarbon growth processes in a 2-methyl-2-butene flame. Combust. Flame., 175, 34–46. doi:10.1016/j.combustflame.2016.06.032.
  • Tanaka, S., Ayala, F., and Keck, J.C. 2003. A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine. Combust. Flame., 133, 467–481. doi:10.1016/S0010-2180(03)00057-9.
  • Touchard, S., Buda, F., Dayma, G., Glaude, P.A., Fournet, R., and Battin-Leclerc, F. 2005. Experimental and modeling study of the oxidation of 1-pentene at high temperature. Int. J. Chem. Kinet., 37, 451–463. doi:10.1002/(ISSN)1097-4601.
  • Veloo, P.S., and Egolfopoulos, F.N. 2011. Studies of n-propanol, iso-propanol, and propane flames. Combust. Flame., 158, 501–510. doi:10.1016/j.combustflame.2010.10.001.
  • Veloo, P.S., Wang, Y.L., Egolfopoulos, F.N., and Westbrook, C.K. 2010. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames. Combust. Flame., 157, 1989–2004. doi:10.1016/j.combustflame.2010.04.001.
  • Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F.N., et al. 2007. USC mech version II: high temperature combustion reaction model of H2/CO/C1−C4 compounds. http://ignis.usc.edu/USC_Mech_II.htm
  • Wang, Y.L., Feng, Q., Egolfopoulos, F.N., and Tsotsis, T.T. 2011. Studies of C4 and C10 methyl ester flames. Combust. Flame., 158, 1507–1519. doi:10.1016/j.combustflame.2010.12.032.
  • Westbrook, C.K., Pitz, W., Mehl, M., Glaude, P.-A., Herbinet, O., Bax, S., Battin-Leclerc, F., Mathieu, O., Petersen, E.L., Bugler, J., and Curran, H.J. 2015. An experimental and kinetic modeling study of 2-methyl-2-butene: allylic hydrocarbon kinetics. J. Phys. Chem. A, 119, 7462–7480. doi:10.1021/acs.jpca.5b00687.
  • Zhang, B., Zhang, Z.Y., Zheng, J.K., and Wang, X.P. 2015. Determination of gasoline composition based on Raman spectroscopy. Spectrosc. Spect. Anal., 35, 1577–1581.
  • Zhang, H., Chen, G.X., and Feng, J.Y. 2003. Determination of chemical components in gasoline 93# by GC- MS. J.Instrum. Anal., 22, 56–59.
  • Zhang, L., Cai, J., Zhang, T., and Qi, F. 2010. Kinetic modeling study of toluene pyrolysis at low pressure. Combust. Flame., 157, 1686–1697. doi:10.1016/j.combustflame.2010.04.002.
  • Zhang, Y., Cai, J., Zhao, L., Yang, J., Jin, H., Cheng, Z., Li, Y., Zhang, L., and Qi, F. 2012. An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure. Combust. Flame, 159, 905–917. doi:10.1016/j.combustflame.2011.09.005.
  • Zheng, D. 2016. Research on combustion mechanism of gasoline surrogate fuel and measurement of laminar flame speed. Ph. D. Tsinghua University, Beijing, China.
  • Zheng, D., and Zhong, B.J. 2017. Experimental system of constant volume combustion bomb and measurement of C7 fuels flame speeds. J. Aerospace Power, 32, 2365–2370.
  • Zheng, Z.L., Zhang, Q.F., He, Z.W., and Wang, Y. 2011. A chemical kinetic model of PRF oxidation for HCCI engine: comparison of existing models. Trans. CSICE, 29, 36–42.
  • Zhong, B.J., and Peng, H.S. 2017. Measurement of laminar flame speed and chemical kinetic model of 1-pentene/air mixtures. Combust. Sci. Technol., 189, 1698–1712. doi:10.1080/00102202.2017.1320551.
  • Zhong, B.J., Zeng, Z.M., and Peng, H.S. 2018. The pressure dependence of laminar flame speed of 2-methyl-2-butene/air flames in the 0.1–1.0 MPa range. Combust. Sci. Technol., 190, 1866–1899. doi:10.1080/00102202.2018.1467406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.