196
Views
2
CrossRef citations to date
0
Altmetric
Articles

Modelling of Sub-Grid Scale Reaction Rate Based on a Novel Series Model: Application to a Premixed Bluff-Body Stabilised Flame

, , &
Pages 1043-1058 | Received 07 Oct 2018, Accepted 15 Mar 2019, Published online: 13 Apr 2019

References

  • Auzillon, P., Gicquel, O., Darabiha, N., Veynante, D., and Fiorina, B. 2012. A filtered tabulated chemistry model for LES of stratified flames. Combust. Flame, 159, 2704–2717. doi:10.1016/j.combustflame.2012.03.006
  • Baudoin, E., Yu, R., Nogenmyr, K.-J., Bai, X.-S., and Fureby, C. 2009. Comparison of LES models applied to a bluff body stabilized flame. 47th AIAA Aerospace Sciences Meeting, AIAA, Orlando, Florida, USA.
  • Bekdemir, C., Somers, L., DE GOEY, L., Tillou, J., and Angelberger, C. 2013. Predicting diesel combustion characteristics with large-eddy simulations including tabulated chemical kinetics. Proc. Combust. Inst., 34, 3067–3074. doi:10.1016/j.proci.2012.06.160
  • Branley, N., and Jones, W. 2001. Large eddy simulation of a turbulent non-premixed flame. Combust. Flame, 127, 1914–1934. doi:10.1016/S0010-2180(01)00298-X
  • Chow, F.K., Street, R.L., Xue, M., and Ferziger, J.H. 2005. Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62, 2058–2077. doi:10.1175/JAS3456.1
  • Cocks, P.A., Soteriou, M.C., and Sankaran, V. 2015. Impact of numerics on the predictive capabilities of reacting flow LES. Combust. Flame, 162, 3394–3411. doi:10.1016/j.combustflame.2015.04.016
  • Domingo, P., and Vervisch, L. 2015. Large eddy simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering. Proc. Combust. Inst., 35, 1349–1357. doi:10.1016/j.proci.2014.05.146
  • Domingo, P., and Vervisch, L. 2017. DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modelling. Combust. Flame, 177, 109–122. doi:10.1016/j.combustflame.2016.12.008
  • Emerson, B., Lundrigan, J., O‘Connor, J., Noble, D., and Lieuwen, T. 2011. Dependence of the bluff body wake structure on flame temperature ratio. In 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, USA. pp. 597.
  • Erickson, R., and Soteriou, M. 2011. The influence of reactant temperature on the dynamics of bluff body stabilized premixed flames. Combust. Flame, 158, 2441–2457. doi:10.1016/j.combustflame.2011.05.006
  • Fureby, C. 2000a. A computational study of combustion instabilities due to vortex shedding. Proc. Combust. Inst., 28, 783–791. doi:10.1016/S0082-0784(00)80281-7
  • Fureby, C. 2000b. Large eddy simulation of combustion instabilities in a jet engine afterburner model. Combust. Sci. Technol., 161, 213–243. doi:10.1080/00102200008935818
  • Fureby, C., Tabor, G., Weller, H., and Gosman, A. 1997. A comparative study of subgrid scale models in homogeneous isotropic turbulence. Phys. Fluids, 9, 1416–1429. doi:10.1063/1.869254
  • Ghani, A., Poinsot, T., Gicquel, L., and Staffelbach, G. 2015. LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame, 162, 4075–4083. doi:10.1016/j.combustflame.2015.08.024
  • Giacomazzi, E., Battaglia, V., and Bruno, C. 2004. The coupling of turbulence and chemistry in a premixed bluff-body flame as studied by LES. Combust. Flame, 138, 320–335. doi:10.1016/j.combustflame.2004.06.004
  • Gokulakrishnan, P., Foli, K., Klassen, M., Roby, R., Soteriou, M., Kiel, B., and Sekar, B. 2009. LES-PDF modeling of flame instability and blow-out in bluff-body stabilized flames. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, Colorado, USA, pp. 5409.
  • Jones, W., Marquis, A., and Wang, F. 2015. Large eddy simulation of a premixed propane turbulent bluff body flame using the Eulerian stochastic field method. Fuel, 140, 514–525. doi:10.1016/j.fuel.2014.06.050
  • Katopodes, F.V., Street, R., and Ferziger, J. 2000a. Subfilter-scale scalar transport for large-eddy simulation. 14th Symposium on Boundary Layers and Turbulence, American Meteorologic Society Aspen (CO), Boston, Massachusetts, USA, pp. 472–475.
  • Katopodes, F.V., Street, R.L., and Ferziger, J.H. 2000b. A theory for the subfilter-scale model in large-eddy simulation. Environ. Fluid Mech. Lab. Tech. Rep., 2000-K1, Stanford University.
  • Kiel, B., Garwick, K., Gord, J.R., Miller, J., Lynch, A., Hill, R., and Phillips, S. 2007. A detailed investigation of bluff body stabilized flames. AIAA Paper No. 2007-168, pp. 168.
  • Kim, J., and Pope, S.B. 2014. Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method. Combust. Theory Modell., 18, 388–413. doi:10.1080/13647830.2014.919411
  • Knudsen, E., Richardson, E., Doran, E., Pitsch, H., and Chen, J. 2012. Modeling scalar dissipation and scalar variance in large eddy simulation: algebraic and transport equation closures. Phys. Fluids, 24, 055103. doi:10.1063/1.4711369
  • Ma, T., Gao, Y., Kempf, A.M., and Chakraborty, N. 2014. Validation and implementation of algebraic LES modelling of scalar dissipation rate for reaction rate closure in turbulent premixed combustion. Combust. Flame, 161, 3134–3153. doi:10.1016/j.combustflame.2014.05.023
  • Ma, T., Stein, O., Chakraborty, N., and Kempf, A. 2013. A posteriori testing of algebraic flame surface density models for LES. Combust. Theory Modell., 17, 431–482. doi:10.1080/13647830.2013.779388
  • Möller, S.-I., Lundgren, E., and Fureby, C. 1996. Large eddy simulation of unsteady combustion. Symposium (International) on Combustion, Naples, Italy, pp. 241–248.
  • Moureau, V., Domingo, P., and Vervisch, L. 2011. From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-pdf modeling. Combust. Flame, 158, 1340–1357. doi:10.1016/j.combustflame.2010.12.004
  • Navarro-Martinez, S., and Kronenburg, A. 2007. LES-CMC simulations of a turbulent bluff-body flame. Proc. Combust. Inst., 31, 1721–1728. doi:10.1016/j.proci.2006.07.212
  • Park, N.S., and Ko, S.C. 2011. Large eddy simulation of turbulent premixed combustion flow around bluff body. J. Mech. Sci. Technol., 25, 2227. doi:10.1007/s12206-011-0537-2
  • Peters, N., and Rogg, B. 2008. Reduced Kinetic Mechanisms for Applications in Combustion Systems, Springer Science & Business Media, Berlin, Germany.
  • Poinsot, T., and Veynante, D. 2005. Theoretical and Numerical Combustion, RT Edwards, Inc, Philadelphia, Pennsylvania, USA.
  • Pope, S.B. 2001. Turbulent Flows, IOP Publishing, Cambridge, England, UK.
  • Porumbel, I., and Menon, S. 2006. Large eddy simulation of bluff body stabilized premixed flame. AIAA paper.
  • Sankaran, V., Palies, P., Liljenberg, S., Teerlinck, K., and Soteriou, M. 2012. Stabilization dynamics of bluff-body premixed flames. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, pp. 352. , Nashville, Tennessee, USA.
  • Shanbhogue, S.J., Husain, S., and Lieuwen, T. 2009. Lean blowoff of bluff body stabilized flames: scaling and dynamics. Prog. Energy Combust. Sci., 35, 98–120. doi:10.1016/j.pecs.2008.07.003
  • Sjunnesson, A., Nelsson, C., and Max, E. 1991a. LDA measurements of velocities and turbulence in a bluff body stabilized flame. Laser Anemometry, 3, 83–90
  • Sjunnesson, A., Olovsson, S., and Sjoblom, B. 1991b. Validation rig- A tool for flame studies. International Symposium on Air Breathing Engines, 10 th, Nottingham, England, pp. 385–393.
  • Villasenor, R., Chen, J.-Y., and Pitz, R. 1992. Modeling ideally expanded supersonic turbulent jet flows with nonpremixed H2-air combustion. AIAA J., 30, 395–402. doi:10.2514/3.10930
  • Wang, G., Boileau, M., and Veynante, D. 2011. Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame, 158, 2199–2213. doi:10.1016/j.combustflame.2011.04.008
  • Weller, H.G., Tabor, G., Jasak, H., and Fureby, C. 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys., 12, 620–631. doi:10.1063/1.168744
  • Zettervall, N., Nordin-Bates, K., Nilsson, E., and Fureby, C. 2017. Large eddy simulation of a premixed bluff body stabilized flame using global and skeletal reaction mechanisms. Combust. Flame, 179, 1–22. doi:10.1016/j.combustflame.2016.12.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.