2,279
Views
34
CrossRef citations to date
0
Altmetric
Articles

Kinetic Modeling of NOx Formation and Consumption during Methanol and Ethanol Oxidation

, ORCID Icon, &
Pages 1627-1659 | Received 10 Sep 2018, Accepted 09 Apr 2019, Published online: 02 May 2019

References

  • Al-Hasan, M. 2003. Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission. Energy Convers. Manag., 44, 1547. doi:10.1016/S0196-8904(02)00166-8
  • Altarawneh, M., Al-Muhtaseb, A.H., Dlugogorski, B.Z., Kennedy, E.M., and Mackie, J.C. 2011. Rate Constants for hydrogen abstraction reactions by the hydroperoxyl radical from methanol, ethenol, acetaldehyde, toluene, and phenol. J. Comput. Chem., 32, 1725. doi:10.1002/jcc.21756
  • Alzueta, M.U., Bilbao, R., and Finestra, M. 2001. Methanol oxidation and its interaction with nitric oxide. Energ. Fuels., 15, 724. doi:10.1021/ef0002602
  • Alzueta, M.U., and Hernández, J.M. 2002. Ethanol oxidation and its interaction with nitric oxide. Energ. Fuels., 16, 166. doi:10.1021/ef010153n
  • Aranda, V., Christensen, J.M., Alzueta, M.U., Glarborg, P., Gersen, S., Gao, Y., and Marshall, P. 2013. Experimental and kinetic modeling study of methanol ignition and oxidation at high pressure. Int. J. Chem. Kinet., 45, 283. doi:10.1002/kin.20764
  • Baldwin, R.R., Keen, A., and Walker, R.W. 1984. Studies of the decomposition of oxirane and of its addition to slowly reacting mixtures of hydrogen and oxygen at 480 °C. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 80, 435.
  • Baulch, D.L., Bowman, C.T., Cobos, C.J., Cox, R.A., Just, T., Kerr, J.A., Pilling, M.J., Stocker, D., Troe, J., Walker, R.W., Warnatz, J., and Baulch, D.L. 2005. Evaluated kinetic data for combustion modeling: Supplement II J. Phys. Chem. Ref. Data 34, 34, 757. doi:10.1063/1.1748524
  • Baulch, D.L., Cobos, C.J., Cox, R.A., Esser, C., Frank, P., Just, T., Kerr, J.A., Pilling, M.J., Troe, J., Walker, R.W., and Warnatz, J. 1992. Evaluated kinetic data for combustion modelling. J. Phys. Chem. Ref. Data, 21, 411. doi:10.1063/1.555908
  • Bendtsen, A.B., Glarborg, P., and Dam-Johansen, K. 2000. Low temperature oxidation of methane: the influence of nitrogen oxides. Combust. Sci. Technol., 151, 31. doi:10.1080/00102200008924214
  • Biggs, P., Canosa-Mas, C.E., Fracheboud, J.-M., Parr, A.D., Shallcross, D.E., Wayne, R.P., and Caralp, F. 1993. Investigation into the pressure dependence between 1 and 10 Torr of the reactions of NO2 with CH3 and CH3O. J. Chem. Soc. Faraday Trans., 89, 4163. doi:10.1039/ft9938904163
  • Bohon, M.D., Guiberti, T.F., Mani Sarathy, S., and Roberts, W.L. 2017. Variations in non-thermal NO formation pathways in alcohol flames. Proc. Combust. Inst., 36, 3995. doi:10.1016/j.proci.2016.05.024
  • Bohon, M.D., Guiberti, T.F., and Roberts, W.L. 2018. PLIF measurements of non-thermal NO concentrations in alcohol and alkane premixed flames. Combust. Flame., 194, 363. doi:10.1016/j.combustflame.2018.05.024
  • Burke, U., Metcalfe, W.K., Burke, S.M., Heufer, K.A., Dagaut, P., and Curran, H.J. 2016. A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation. Combust. Flame., 165, 125. doi:10.1016/j.combustflame.2015.11.004
  • Burke, U., Somers, K.P., O’Toole, P., Zinner, C.M., Marquet, N., Bourque, G., Petersen, E.L., Metcalfe, W.K., Serinyel, Z., and Curran, H.J. 2015. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures. Combust. Flame., 162, 315. doi:10.1016/j.combustflame.2014.08.014
  • Caralp, F., Rayez, M.-T., Forst, W., Gomez, N., Delcroix, B., Fittschen, C., and Devolder, P. 1998. Kinetic and mechanistic study of the pressure and temperature dependence of the reaction CH3O+NO. J. Chem. Soc. Faraday Trans., 94, 3321. doi:10.1039/a807456i
  • Carstensen, -H.-H., and Dean, A.M. 2005. Rate constants for the abstraction reactions RO2 + C2H6; R = H, CH3, and C2H5. Proc. Combust. Inst., 30, 995. doi:10.1016/j.proci.2004.08.076
  • Çelik, M.B., Özdalyan, B., and Alkan, F. 2011. The use of pure methanol as fuel at high compression ratio in a single cylinder gasoline engine. Fuel., 90, 1591. doi:10.1016/j.fuel.2010.10.035
  • Chang, J.G., Chen, H.T., Xu, S., and Lin, M.C. 2007. Computational study on the kinetics and mechanisms for the unimolecular decomposition of formic and oxalic acids. J. Phys. Chem. A, 111, 6789.
  • Chen, C., Song, J., Song, C., and Lv, G. 2015. A computational study of the kinetics and mechanism for the C 2 H 3 + CH 3 OH Reaction. Int. J. Chem. Kinet., 47, 764. doi:10.1002/kin.20959
  • Choi, Y.M., and Lin, M.C. 2005. Kinetics and mechanisms for reactions of HNO with CH3 and C6H5 studied by quantum-chemical and statistical-theory calculations. Int. J. Chem. Kinet., 37, 261. doi:10.1002/kin.20079
  • Christensen, M., Abebe, M.T., Nilsson, E.J.K., and Konnov, A.A. 2015. Kinetics of premixed acetaldehyde + air flames. Proc. Combust. Inst., 35, 499. doi:10.1016/j.proci.2014.06.136
  • Curran, H.J., Dunphy, M.P., Simmie, J.M., and Westbrook, C.K. 1992. Shock tube ignition of ethanol, isobutene and MTBE: experiments and modeling’. Proc. Combust. Inst., 24, 769. doi:10.1016/S0082-0784(06)80094-9
  • Da Silva, G., Bozzelli, J.W., Liang, L., and Farrell, J.T. 2009. Ethanol oxidation: kinetics of the r-hydroxyethyl radical + O2 reaction. J.Phy.Chem.A, 113, 8923.
  • Da Silva, R., Cataluña, R., De Menezes, E.W., Samios, D., and Piatnicki, C.M.S. 2005. Effect of additives on the antiknock properties and Reid vapor pressure of gasoline. Fuel., 84, 951. doi:10.1016/j.fuel.2005.01.008
  • Dagaut, P., Reuillon, M., Voisin, D., Cathonnet, M., McGUINNESS, M., and Simmie, J.M. 1995. Acetaldehyde oxidation in a JSR and ignition in shock waves: experimental and comprehensive kinetic modeling. Combust. Sci. Technol., 107, 301. doi:10.1080/00102209508907809
  • Dames, E.E. 2014. Master equation modeling of the unimolecular decompositions of α-hydroxyethyl (CH 3 CHOH) and ethoxy (CH 3 CH 2 O) radicals. Int. J. Chem. Kinet., 46, 176. doi:10.1002/kin.20844
  • Davidson, J.A., and Thrus, B.A. 1977. Reaction of oxygen atoms with methyl and ethyl nitrates. J. Chem. Soc. Faraday Trans. 1, 73, 1098. doi:10.1039/f19777301098
  • Davies, J.W., Green, N.J.B., and Pilling, M.J. 1991. Association reaction of CH3 and NO: evidence for the involvement of the triplet surface. J. Chem. Soc. Faraday Trans., 87, 2317. doi:10.1039/ft9918702317
  • Dayma, G., Ali, K.H., and Dagaut, P. 2007. Experimental and detailed kinetic modeling study of the high pressure oxidation of methanol sensitized by nitric oxide and nitrogen dioxide. Proc. Combust. Inst., 31 1, 411. doi:10.1016/j.proci.2006.07.143
  • DeSain, J.D., Klippenstein, S.J., Miller, J.A., and Taatjes, C.A. 2003. Measurements, theory, and modeling of OH formation in ethyl + O2 and propyl + O2 reactions. J. Phys. Chem. A, 107, 4415. doi:10.1021/jp0221946
  • Dias, V., and Vandooren, J. 2011. Experimental and modeling studies of C2H4/O2/Ar, C2H4/methylal/O2/Ar and C2H4/ethylal/O2/Ar rich flames and the effect of oxygenated additives. Combust. Flame., 158, 848. doi:10.1016/j.combustflame.2011.01.015
  • Dirrenberger, P., Glaude, P., Bounaceur, R., Le Gall, H., Da Cruz, P., Konnov, A.A., and Battin-Leclerc, F. 2014. Laminar burning velocity of gasolines with addition of ethanol. Fuel., 115, 162. doi:10.1016/j.fuel.2013.07.015
  • Egolfopoulos, F.N., Du, D.X., and Law, C.K. 1992. A comprehensive study of methanol kinetics in freely-propagating and burner-stabilized flames, flow and static reactors, and shock tubes. Combust. Sci. Technol., 83, 33. doi:10.1080/00102209208951823
  • Eiteneer, B., and Frenklach, M. 2003. Experimental and modeling study of shock-tube oxidation of acetylene. Int. J. Chem. Kinet., 35, 391. doi:10.1002/kin.10141
  • Fan, Z., Xia, Z., Shijin, S., Jianhua, X., and Jianxin, W. 2010. Unregulated emissions and combustion characteristics of low-content methanol-gasoline blended fuels. Energ. Fuels., 24, 1283. doi:10.1021/ef900974p
  • Friedrichs, G., Davidson, D.F., and Hanson, R.K. 2004. Validation of a thermal decomposition mechanism of formaldehyde by detection of CH2O and HCO behind shock waves. Int. J. Chem. Kinet., 36, 157. doi:10.1002/kin.10183
  • Gallagher, S.M., Curran, H.J., Metcalfe, W.K., Healy, D., Simmie, J.M., and Bourque, G. 2008. A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime. Combust. Flame., 153, 316. doi:10.1016/j.combustflame.2007.09.004
  • Gimenez-Lopez, J., Rasmussen, C.T., Hashemi, H., Alzueta, M.U., Gao, Y., Marshall, P., Goldsmith, C.F., and Glarborg, P. 2016. Experimental and kinetic modeling study of C 2 H 2 oxidation at high pressure. Int. J. Chem. Kinet., 48, 724. doi:10.1002/kin.21028
  • Glanzer, K., and Troe, J. 1972. Thermische Zerfallsreaktionen von Nitroverbindungen I: dissoziation von Nitromethan. Helv. Chim. Acta., 55, 2884. doi:10.1002/hlca.19720550821
  • Glarborg, P., Alzueta, M.U., Dam-Johansen, K., and Miller, J.A. 1998. Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor. Combust. Flame., 115, 1. doi:10.1016/S0010-2180(97)00359-3
  • Glarborg, P., Bendtsen, A.B., and Miller, J.A. 1999. Nitromethane dissociation : implications for the CH 3 + NO2 reaction. Int. J. Chem. Kinet., 31, 591. doi:10.1002/(SICI)1097-4601(1999)31:9<591::AID-KIN1>3.0.CO;2-E
  • Glarborg, P., Miller, J.A., Ruscic, B., and Klippenstein, S.J. 2018. Modeling nitrogen chemistry in combustion. Prog. Energ. Combust. Sci., 67, 31. doi:10.1016/j.pecs.2018.01.002
  • Goldsmith, C.F., Harding, L.B., Georgievskii, Y., Miller, J.A., and Klippenstein, S.J. 2015. Temperature and pressure-dependent rate coefficients for the reaction of vinyl radical with molecular oxygen. J. Phys. Chem. A, 119, 7766. doi:10.1021/acs.jpca.5b06446
  • Goos, E., Burcat, A., and Ruscic, B. 2005. Third Millenium Ideal Gas and Condensed Phase Thermochemical Database for Combustion (With Update from Active Thermochemical Tables), Argonne
  • Goos, E., Sickfeld, C., Mauss, F., Seidel, L., Ruscic, B., Burcat, A., and Zeuch, T. 2013. Prompt NO formation in flames: the influence of NCN thermochemistry. Proc. Combust. Inst., 34, 657. doi:10.1016/j.proci.2012.06.128
  • Gülder, Ö.L. 1982. Laminar burning velocities of methanol, ethanol and isooctane-air mixtures. Symp. Combust., 19, 275. doi:10.1016/S0082-0784(82)80198-7
  • Guo, J., Xu, J., Li, Z., Tan, N., and Li, X. 2015. Temperature and pressure dependent rate coefficients for the reaction of C 2 H 4 + HO 2 on the C 2 H 4 O 2 H potential energy surface. J. Phys. Chem. A, 119, 3161. doi:10.1021/acs.jpca.5b06446
  • Hansen, A.C., Zhang, Q., and Lyne, P.W.L. 2005. Ethanol-diesel fuel blends - A review. Bioresour. Technol., 96, 277. doi:10.1016/j.biortech.2004.04.007
  • Harding, L.B., Georgievskii, Y., and Klippenstein, S.J. 2005. Predictive theory for hydrogen atom-hydrocarbon radical association kinetics. J. Phys. Chem. A, 109, 4646. doi:10.1021/jp0407472
  • Hashemi, H., Jacobsen, J.G., Rasmussen, C.T., Christensen, J.M., Glarborg, P., Gersen, S., van Essen, M., Levinsky, H.B., and Klippenstein, S.J. 2017. High-pressure oxidation of ethane. Combust. Flame., 182, 150. doi:10.1016/j.combustflame.2017.03.028
  • Hjuler, K., Glarborg, P., and Dam-Johansen, K. 1995. Mutually promoted thermal oxidation of nitric oxide and organic compounds. Ind. Eng. Chem. Res., 34, 1882. doi:10.1021/ie00044a040
  • Hoyermann, K., Mauß, F., Olzmann, M., Welz, O., and Zeuch, T. 2017. Exploring the chemical kinetics of partially oxidized intermediates by combining experiments, theory, and kinetic modeling. Phys. Chem. Chem. Phys., 19, 18128. doi:10.1039/C7CP02759A
  • Hsieh, W.D., Chen, R.H., Wu, T.L., and Lin, T.H. 2002. Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmos. Environ., 36, 403. doi:10.1016/S1352-2310(01)00508-8
  • Hsu, D.S.Y., and Lin, M.C. 1985. Laser probing and kinetic modeling of NO and CO production in shock-wave decomposition of nitromethane under highly diluted conditions. J. Energ. Mater., 3, 95. http://logesoft.com/loge-software/ n.d.
  • Huynh, L.K., and Truong, T.N. 2008. Kinetics of the hydrogen abstraction CHO + Alkane → HCHO + Alkyl reaction class: an application of the reaction class transition state theory. Theor. Chem. Acc., 120, 107. doi:10.1007/s00214-007-0311-9
  • Jasper, A.W., Klippenstein, S.J., Harding, L.B., and Ruscic, B. 2007. Kinetics of the reaction of methyl radical with hydroxyl radical and methanol decomposition. J. Phys. Chem. A, 111, 3932.
  • Klippenstein, S.J. 2017. From theoretical reaction dynamics to chemical modeling of combustion. Proc. Combust. Inst., 36, 77. doi:10.1016/j.proci.2016.07.100
  • Klippenstein, S.J., Miller, J.A., and Harding, L.B. 2002. Resolving the mystery of prompt CO2: the HCCO+O2 reaction. Proc. Combust. Inst., 29, 1209. doi:10.1016/S1540-7489(02)80150-X
  • Klippenstein, S.J., Pfeifle, M., Jasper, A.W., and Glarborg, P. 2018. Theory and modeling of relevance to prompt-NO formation at high pressure. Combust. Flame., 195, doi:10.1016/j.combustflame.2018.04.029
  • Koç, M., Sekmen, Y., Topgül, T., and Yücesu, H.S. 2009. The effects of ethanol-unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine. Renew. Energy, 34, 2101. doi:10.1016/j.renene.2009.01.018
  • Koda, S., and Tanaka, M. 1986. Ignition of premixed methanol/air in a heated flow tube and the effect of NO2 addition. Combust. Sci. Technol., 47, 165. doi:10.1080/00102208608923871
  • Konnov, A.A. 2009. Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism. Combust. Flame., 156, 2093. doi:10.1016/j.combustflame.2009.03.016
  • Konnov, A.A., Barnes, F.J., Bromly, J.H., Zhu, J.N., and Zhang, D. 2005. The pseudo-catalytic promotion of nitric oxide oxidation by ethane at low temperatures. Combust. Flame., 141, 191. doi:10.1016/j.combustflame.2005.01.003
  • Konnov, A.A., Meuwissen, R.J., and De Goey, L.P.H. 2011. The temperature dependence of the laminar burning velocity of ethanol flames. Proc. Combust. Inst., 33, 1011. doi:10.1016/j.proci.2010.06.143
  • Kopp, M.M., Petersen, E.L., Metcalfe, W.K., Burke, S.M., and Curran, H.J. 2014. Oxidation of ethylene—air mixtures at elevated pressures, part 2: chemical kinetics. J. Propuls. Power, 30, 799. doi:10.2514/1.B34891
  • Labbe, N.J., Sivaramakrishnan, R., and Klippenstein, S.J. 2015. The role of radical + fuel-radical well-skipping reactions in ethanol and methylformate low-pressure flames. Proc. Combust. Inst., 35, 447. doi:10.1016/j.proci.2014.05.107
  • Lamoureux, N., El Merhubi, H., Pillier, L., de Persis, S., and Desgroux, P. 2016. Modeling of NO formation in low pressure premixed flames. Combust. Flame., 163, 557. doi:10.1016/j.combustflame.2015.11.007
  • Lee, J., and Bozzelli, J.W. 2003. Thermochemical and kinetic analysis of the formyl methyl radical + O2 reaction system. J. Phys. Chem. A, 107, 3778. doi:10.1021/jp030001o
  • Leplat, N., Dagaut, P., Togbé, C., and Vandooren, J. 2011. Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor. Combust. Flame., 158, 705. doi:10.1016/j.combustflame.2010.12.008
  • Li, J., Zhao, Z., Kazakov, A., Chaos, M., Dryer, F.L., and Scire, J.J. 2007. A Comprehensive KineticMechanism for CO, CH2O, and CH3OH combustion. Int. J. Chem. Kinet., 39, 109. doi:10.1002/kin.20218
  • Li, S.C., and Williams, F.A., 1998. Formation of nox, ch4, and c2 species in laminar methanol flames. Symp. Combust., 27, 485.
  • Liao, S.Y., Jiang, D.M., Huang, Z.H., Zeng, K., and Cheng, Q. 2007. Determination of the laminar burning velocities for mixtures of ethanol and air at elevated temperatures. Appl. Therm. Eng., 27, 374. doi:10.1016/j.applthermaleng.2006.07.026
  • Lopez, J.G., Rasmussen, C.L., Alzueta, M.U., Gao, Y., Marshall, P., and Glarborg, P. 2009. Experimental and kinetic modeling study of C2H4 oxidation at high pressure. Proc. Combust. Inst., 32, 367. doi:10.1016/j.proci.2008.06.188
  • LoRusso, J.A. 1976. Combustion and Emissions Characteristics of Methanol, Methanol-Water, and Gasoline-Methanol Blends in a Spark Ignition Engine, Massachusetts Institute of Technology
  • Lu, K.-W., Matsui, H., Huang, C.-L., Raghunath, P., Wang, N.-S., and Lin, M.C. 2010. Shock tube study on the thermal decomposition of CH 3 OH. J. Phys. Chem. A, 114, 5493. doi:10.1021/jp100535r
  • Lyon, R.K., Cole, J.A., Kramlich, J.C., and Chen, S.L. 1990. The selective reduction of SO3 to SO2 and the oxidation of NO to NO2 by methanol. Combust. Flame., 81, 30. doi:10.1016/0010-2180(90)90067-2
  • Marinov, N.M. 1999. A detailed chemical kinetic model for high temperature ethanol oxidation. Int. J. Chem. Kinet., 31, 183. doi:10.1002/(SICI)1097-4601(1999)31:3<183::AID-KIN3>3.0.CO;2-X
  • Marques, C.S.T., Barreta, L.G., Sbampato, M.E., and Dos Santos, A.M. 2010. Laser-saturated fluorescence of nitric oxide and chemiluminescence measurements in premixed ethanol flames. Exp. Therm. Fluid Sci., 34, 1142. doi:10.1016/j.expthermflusci.2010.04.003
  • Marrodán, L., Arnal, Á.J., Millera, Á., Bilbao, R., and Alzueta, M.U. 2018. High-pressure ethanol oxidation and its interaction with NO. Fuel., 223, 394. doi:10.1016/j.fuel.2018.03.048
  • Mathieu, O., Giri, B., Agard, A.R., Adams, T.N., Mertens, J.D., and Petersen, E.L. 2016. Nitromethane ignition behind reflected shock waves: experimental and numerical study. Fuel., 182, 597. doi:10.1016/j.fuel.2016.05.060
  • Matsugi, A., and Miyoshi, A. 2014. Yield of formyl radical from the vinyl + O 2 reaction. Int. J. Chem. Kinet., 46, 260. doi:10.1002/kin.20823
  • Meana-Pañeda, R., Truhlar, D.G., and Fernández-Ramos, A. 2011. High-level direct-dynamics variational transition state theory calculations including multidimensional tunneling of the thermal rate constants, branching ratios, and kinetic isotope effects of the hydrogen abstraction reactions from methanol by atomic hyd. J. Chem. Phys., 134. doi: 10.1063/1.3555763
  • Mendes, J., Zhou, C.-W., and Curran, H.J. 2014. Theoretical chemical kinetic study of the H-atom abstraction reactions from aldehydes and acids by Ḣ atoms and ȮH, HȮ 2, and ĊH 3 radicals. J. Phys. Chem. A, 118, 12089. doi:10.1021/jp5072814
  • Mendiara, T., and Glarborg, P. 2009. Ammonia chemistry in oxy-fuel combustion of methane. Combust. Flame., 156, 1937. doi:10.1016/j.combustflame.2009.07.006
  • Metcalfe, W.K., Burke, S.M., Ahmed, S.S., and Curran, H.J. 2013. A hierarchical and comparative kinetic modeling study of C1- C2hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet., 45, 638. doi:10.1002/kin.20802
  • Miller, J.A., and Bowman, C.T. 1989. Mechanism and Modeling of Nitrogen Chemistry in Combustion. Prog. Energ. Combust. Sci., 15, 287. doi:10.1016/0360-1285(89)90017-8
  • Miller, J.A., and Klippenstein, S.J. 2001. The reaction between ethyl and molecular oxygen II: further analysis. Int. J. Chem. Kinet., 33, 654. doi:10.1002/kin.1063
  • Miller, J.A., and Klippenstein, S.J. 2004. The H + C 2 H 2 (+M) ⇋ C 2 H 3 (+M) and H + C 2 H 2 (+M) ⇋ C 2 H 5 (+M) reactions: electronic structure, variational transition-state theory, and solutions to a two-di. Phys. Chem. Chem. Phys., 6, 1192. doi:10.1039/B313645K
  • Miller, J.A., Klippenstein, S.J., and Raffy, C. 2002. Solution of some one- and two-dimensional master equation models for thermal dissociation: the dissociation of methane in the low-pressure limit. J. Phys. Chem. A, 106, 4904. doi:10.1021/jp0144698
  • Miller, J.A., Mitchell, R.E., Smooke, M.D., and Kee, R.J. 1982. Toward a comprehensive chemical kinetic mechanism for the oxidation of acetylene: comparison of model predictions with results from flame and shock tube experiments. Symp. Combust., 19, 181. doi:10.1016/S0082-0784(82)80189-6
  • Mittal, G., Burke, S.M., Davies, V.A., Parajuli, B., Metcalfe, W.K., and Curran, H.J. 2014. Autoignition of ethanol in a rapid compression machine. Combust. Flame., 161, 1164. doi:10.1016/j.combustflame.2013.11.005
  • Moortgat, G.K., Slemer, F., and Warneck, P. 1977. Kinetics and mechanism of the reaction H + CH3ONO. Int. J. Chem. Kinet., IX, 249. doi:10.1002/kin.550090209
  • Moréac, G., Dagaut, P., Roesler, J.F., and Cathonnet, M. 2006. Nitric oxide interactions with hydrocarbon oxidation in a jet-stirred reactor at 10 atm. Combust. Flame., 145, 512. doi:10.1016/j.combustflame.2006.01.002
  • Moskaleva, L.V., and Lin, M.C. 2000. The spin-conserved reaction CH+N2→H+NCN: A major pathway to prompt no studied by quantum/statistical theory calculations and kinetic modeling of rate constant. Proc. Combust. Inst., 28, 2393. doi:10.1016/S0082-0784(00)80652-9
  • Nauclér, J.D., Li, Y., Nilsson, E.J.K., Curran, H.J., and Konnov, A.A. 2016. An experimental and modeling study of nitromethane + O2 + N2 ignition in a shock tube. Fuel., 186, 629. doi:10.1016/j.fuel.2016.09.003
  • Nielsen, O.J., Sidebottom, H.W., Donlon, M., and Treacy, J. 1991. Rate constants for the gas-phase reactions of OH radicals and Cl atoms with normal-alkyl nitrites at atmospheric-pressure and 298-K. Int. J. Chem. Kinet., 23, 1095. doi:10.1002/kin.550231204
  • Noorani, K.E., Akih-Kumgeh, B., and Bergthorson, J.M. 2010. Comparative high temperature shock tube ignition of C1-C4 primary alcohols. Energ. Fuels., 24, 5834. doi:10.1021/ef1009692
  • Olm, C., Varga, T., Valkó, É., Hartl, S., Hasse, C., and Turányi, T. 2016. Development of an ethanol combustion mechanism based on a hierarchical optimization approach. Int. J. Chem. Kinet., 48, 423. doi:10.1002/kin.20998
  • Phillips, L., and Shaw, R. Reactions of methyl and methoxy radicals with nitrogen dioxide and nitric oxide. Proc. Combust. Inst., 453. doi:10.1016/S0082-0784(65)80192-8
  • Pourkhesalian, A.M., Shamekhi, A.H., and Salimi, F. 2010. Alternative fuel and gasoline in an SI engine: A comparative study of performance and emissions characteristics. Fuel., 89, 1056. doi:10.1016/j.fuel.2009.11.025
  • Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelley, A.P., and Law, C.K. 2012. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog. Energ. Combust. Sci., 38, 468. doi:10.1016/j.pecs.2012.03.004
  • Rao, H.B., Zeng, X.Y., He, H., and Li, Z.R. 2011. Theoretical investigations on removal reactions of ethenol by H atom. J. Phys. Chem. A, 115, 1602. doi:10.1021/jp111407d
  • Rasmussen, C.L., Rasmussen, A.E., and Glarborg, P. 2008. Sensitizing effects of NOx on CH4 oxidation at high pressure. Combust. Flame., 154, 529. doi:10.1016/j.combustflame.2008.01.012
  • Rau, F., Hartl, S., Voss, S., Still, M., Hasse, C., and Trimis, D. 2015. Laminar burning velocity measurements using the Heat Flux method and numerical predictions of iso-octane/ethanol blends for different preheat temperatures. Fuel., 140, 10. doi:10.1016/j.fuel.2014.09.059
  • Saeed, K., and Stone, C.R. 2004. Measurements of the laminar burning velocity for mixtures of methanol and air from a constant-volume vessel using a multizone model. Combust. Flame., 139, 152. doi:10.1016/j.combustflame.2004.08.008
  • San Diego Mechanism [online], 2014. Available from: http://combustion.ucsd.edu.
  • Saxena, P., and Williams, F.A. 2007. Numerical and experimental studies of ethanol flames. Proc. Combust. Inst., 31 1, 1149. doi:10.1016/j.proci.2006.08.097
  • Senosiain, J.P., Klippenstein, S.J., and Miller, J.A. 2005. The Reaction of Acetylene with Hydroxyl Radicals.  J. Phys. Chem. A, 109, 6045. doi: 10.1021/jp050737g
  • Senosiain, J.P., Klippenstein, S.J., and Miller, J.A. 2006. Reaction of ethylene with hydroxyl radicals: A theoretical study. J. Phys. Chem. A, 110, 6960. doi:10.1021/jp0620825
  • Seok-Jan, W., Ji-Cheol, R., Jun-Hyun, B., Youn-Doo, K., and Jun-Gill, K. 2000. Shock tube study of the oxidation of acetaldehyde at high temperature. Bull. Korean. Chem. Soc., 21, 487.
  • Shrestha, K.P., Seidel, L., Zeuch, T., and Mauss, F. 2018. Detailed kinetic mechanism for the oxidation of ammonia including the formation and reduction of nitrogen oxides. Energ. Fuels., 32, 10202−10217. doi:10.1021/acs.energyfuels.8b01056
  • Sileghem, L., Alekseev, V.A., Vancoillie, J., Nilsson, E.J.K., Verhelst, S., and Konnov, A.A. 2014. Laminar burning velocities of primary reference fuels and simple alcohols. Fuel., 115, 32. doi:10.1016/j.fuel.2013.07.004
  • Sivaramakrishnan, R., Michael, J.V., Harding, L.B., and Klippenstein, S.J. 2015. Resolving some paradoxes in the thermal decomposition mechanism of acetaldehyde. J. Phys. Chem. A, 119, 7724. doi:10.1021/acs.jpca.5b06446
  • Sivaramakrishnan, R., Su, M.C., Michael, J.V., Klippenstein, S.J., Harding, L.B., and Ruscic, B. 2010. Rate constants for the thermal decomposition of ethanol and its bimolecular reactions with OH and D: reflected shock tube and theoretical studies. J. Phys. Chem. A, 114, 9425. doi:10.1021/jp104759d
  • Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, V.V., and Qin, Z., 1999. GRI-Mech 3.0 [online]. Available from: http://www.me.berkeley.edu/gri_mech/.
  • Srinivasan, N.K., Su, M.C., Sutherland, J.W., and Michael, J.V. 2005. Reflected shock tube studies of high-temperature rate constants for CH 3 + O 2, H 2CO + O 2, and OH + O 2. J. Phys. Chem. A, 109, 7902. doi:10.1021/jp0407472
  • Sutton, J.A., Williams, B.A., and Fleming, J.W. 2012. Investigation of NCN and prompt-NO formation in low-pressure C1-C4 alkane flames. Combust. Flame., 159, 562. doi:10.1016/j.combustflame.2011.08.023
  • Svensson, E., Li, C., Shamun, S., Johansson, B., Tuner, M., Perlman, C., Lehtiniemi, H., and Mauss, F. 2016. Potential levels of Soot, NOx, HC and CO for methanol combustion. SAE Tech. Pap, 2016–01–0887
  • Taylor, P.H., Rahman, M.S., Arif, M., Dellinger, B., and Marshall, P. 1996. Kinetic and mechanistic studies of the reaction of hydroxyl radicals with acetaldehyde over an extended temperature range. Symp. Combust., 26, 497. doi:10.1016/S0082-0784(96)80252-9
  • Tran, L.-S., Glaude, P.-A., Fournet, R., and Battin-Leclerc, F. 2013. Experimental and modeling study of premixed laminar flames of ethanol and methane. Energy Fuels, 27, 2226. doi:10.1021/ef301628x
  • Tsang, W., and Hampson, R.F. 1986. Chemical kinetic data base for combustion chemistry. Part I. methane and related compounds. J. Phys. Chem. Ref. Data, 15, 1087. doi:10.1063/1.555759
  • Vagelopoulos, C.M., and Egolfopoulos, F.N. 1998. Direct experimental determination of laminar flame speeds. Symp. Combust., 27, 513. doi:10.1016/S0082-0784(98)80441-4
  • Van Lipzig, J.P.J., Nilsson, E.J.K., De Goey, L.P.H., and Konnov, A.A. 2011. Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures. Fuel., 90, 2773. doi:10.1016/j.fuel.2011.04.029
  • Vancoillie, J., Christensen, M., Nilsson, E.J.K., Verhelst, S., and Konnov, A.A. 2012. Temperature dependence of the laminar burning velocity of methanol flames. Energ. Fuels., 26, 1557. doi:10.1021/ef2016683
  • Varol, Y., Öner, C., Öztop, H.F., and Altun, Ş. 2014. Comparison of methanol, ethanol, or n -butanol blending with unleaded gasoline on exhaust emissions of an si engine. Energy Sources, Part A Recover. Util. Environ. Eff., 36, 938. doi:10.1080/15567036.2011.572141
  • Versailles, P., Watson, G.M.G., Lipardi, A.C.A., and Bergthorson, J.M. 2016. Quantitative CH measurements in atmospheric-pressure, premixed flames of C1-C4 alkanes. Combust. Flame., 165, 109. doi:10.1016/j.combustflame.2015.11.001
  • Vourliotakis, G., Skevis, G., and Founti, M.A. 2015. Some aspects of combustion chemistry of C1-C2 oxygenated fuels in low pressure premixed flames. Proc. Combust. Inst., 35, 437. doi:10.1016/j.proci.2014.06.060
  • Wang, B., Hou, H., and Gu, Y. 1999. Ab Initio/Density functional theory and multichannel RRKM calculations for the CH 3 O + CO reaction. J. Phys. Chem. A, 103, 8021. doi:10.1021/jp991203g
  • Wang, B., Hou, H., Yoder, L.M., Muckerman, J.T., and Fockenberg, C. 2003. Experimental and theoretical investigations on the methyl-methyl recombination reaction. J. Phys. Chem. A, 107, 11414. doi:10.1021/jp030657h
  • Wang, B.-Y., Liu, Y.-X., Weng, -J.-J., Glarborg, P., and Tian, Z.-Y. 2017. New insights in the low-temperature oxidation of acetylene. Proc. Combust. Inst., 36, 355. doi:10.1016/j.proci.2016.06.163
  • Wang, H., and Frenklach, M. 1997. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combust. Flame., 110, 173. doi:10.1016/S0010-2180(97)00068-0
  • Wang, S., Davidson, D.F., and Hanson, R.K. 2013. High-temperature laser absorption diagnostics for CH2O and CH3CHO and their application to shock tube kinetic studies. Combust. Flame., 160, 1930. doi:10.1016/j.combustflame.2013.05.004
  • Warnatz, J., Maas, U., and Dibble, R.W. 2006. Combustion : Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Springer
  • Watson, G.M.G., Versailles, P., and Bergthorson, J.M. 2016. NO formation in premixed flames of C1-C3 alkanes and alcohols. Combust. Flame., 169, 242. doi:10.1016/j.combustflame.2016.04.015
  • Westbrook, C., Mehl, M., Pitz, W.J., Kukkadapu, G., Wagnon, S.W., and Zhang, K., 2018. Multi-fuel surrogate chemical kinetic mechanisms for real world applications. Phys. Chem. Chem. Phys. 20, 10588. doi:10.1039/C7CP07901J
  • Williams, B.A., and Fleming, J.W. 2007. Experimental and modeling study of NO formation in 10 torr methane and propane flames: evidence for additional prompt-NO precursors. Proc. Combust. Inst., 31, 1109. doi:10.1016/j.proci.2006.07.246
  • Wu, C.W., Lee, Y.P., Xu, S., and Lin, M.C. 2007. Experimental and theoretical studies of rate coefficients for the reaction O(3P) + C2H5OH at high temperatures. J. Phys. Chem. A, 111, 6693.
  • Xu, S., and Lin, M.C. 2007. Theoretical study on the kinetics for OH reactions with CH3OH and C2H5OH. Proc. Combust. Inst., 31 1, 159. doi:10.1016/j.proci.2006.07.132
  • Xu, Z.F., Xu, K., and Lin, M.C. 2009. Ab initio kinetics for decomposition/isomerization reactions of C2H5O radicals. Chem. Phys. Chem., 10, 972. doi:10.1002/cphc.200800719
  • Xu, Z.F., Xu, K., and Lin, M.C. 2011. Thermal decomposition of ethanol. 4. Ab initio chemical kinetics for reactions of H atoms with CH3CH2O and CH3CHOH radicals. J. Phys. Chem. A, 115, 3509. doi:10.1021/jp110580r
  • Yasunaga, K., Kubo, S., Hoshikawa, H., Kamesawa, T., and Hidaka, Y. 2008. Shock-tube and modeling study of acetaldehyde pyrolysis and oxidation. Int. J. Chem. Kinet., 40, 73. doi:10.1002/kin.20294
  • Yüksel, F., and Yüksel, B. 2004. The use of ethanol-gasoline blend as a fuel in an SI engine. Renew. Energy, 29, 1181. doi:10.1016/j.renene.2003.11.012
  • Zhang, K., Li, Y., Yuan, T., Cai, J., Glarborg, P., and Qi, F. 2011. An experimental and kinetic modeling study of premixed nitromethane flames at low pressure. Proc. Combust. Inst., 33, 407. doi:10.1016/j.proci.2010.06.002
  • Zhang, X., Wang, G., Zou, J., Li, Y., Li, W., Li, T., Jin, H., Zhou, Z., and Lee, Y.Y. 2017. Investigation on the oxidation chemistry of methanol in laminar premixed flames. Combust. Flame., 180, 20. doi:10.1016/j.combustflame.2017.02.016
  • Zhang, Y.X., and Bauer, S.H. 1997. Modeling the decomposition of nitromethane, induced by shock heating. J. Phys. Chem. B, 101, 8717. doi:10.1021/jp970716p
  • Zhang, Z., Huang, Z., Wang, X., Xiang, J., Wang, X., and Miao, H. 2008. Measurements of laminar burning velocities and Markstein lengths for methanol-air-nitrogen mixtures at elevated pressures and temperatures. Combust. Flame., 155, 358. doi:10.1016/j.combustflame.2008.07.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.