1,489
Views
14
CrossRef citations to date
0
Altmetric
Articles

Analysis of Markers for Combustion Mode and Heat Release in MILD Combustion Using DNS Data

ORCID Icon &
Pages 1059-1078 | Received 21 Sep 2018, Accepted 19 Apr 2019, Published online: 14 May 2019

References

  • Balachandran, R., Ayoola, B.O., Kaminski, C.F., Dowling, A.P., and Mastorakos, E. 2005. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame, 143(1–2), 37–55. doi:10.1016/j.combustflame.2005.04.009
  • Bilger, R.W., Starner, S.H., and Kee, R.J. 1990. On reduced mechanisms for methane-air combustion in nonpremixed flames. Combust. Flame, 80, 135–149. doi:10.1016/0010-2180(90)90122-8
  • Briones, A.M., Aggarwal, S.K., and Katta, V.R. 2006. A numerical investigation of flame liftoff, stabilization, and blowout. Phys. Fluids, 18, 043603. doi:10.1063/1.2191851
  • Cavaliere, A., and de Joannon, M. 2004. Mild Combustion. Prog. Energy Combust. Sci., 30(4), 329–366. doi:10.1016/j.pecs.2004.02.003
  • Chi, C., Janiga, G., Zähringer, K., and Thévenin, D. 2018. DNS study of the optimal heat release rate marker in premixed methane flames. Proc. Combust. Inst., 37(2), 2363–2371. doi:10.1016/j.proci.2018.07.095
  • Dally, B.B., Riesmeier, E., and Peters, N. 2004. Effect of fuel mixture on moderate and intense low oxygen dilution combustion. Combust. Flame, 137(4), 418–431. doi:10.1016/j.combustflame.2004.02.011
  • de Joannon, M., Saponaro, A., and Cavaliere, A. 2000. Zero-dimensional analysis of diluted oxidation of methane in rich conditions. Proc. Combust. Inst., 28(2), 1639–1646. doi:10.1016/S0082-0784(00)80562-7
  • Doan, N.A.K. 2018 Physical Insights of Non-Premixed MILD Combustion using DNS. PhD thesis, University of Cambridge.
  • Doan, N.A.K., and Swaminathan, N. 2019. Role of radicals on MILD combustion inception. Proc. Combust. Inst., 37, 4539–4546. doi:10.1016/j.proci.2018.07.038
  • Doan, N.A.K., Swaminathan, N., and Minamoto, Y. 2018. DNS of MILD combustion with mixture fraction variations. Combust. Flame, 189, 173–189. doi:10.1016/j.combustflame.2017.10.030
  • Duwig, C., Li, B., Li, Z.S., and Aldén, M. 2012. High resolution imaging of flameless and distributed turbulent combustion. Combust. Flame, 159(1), 306–316. doi:10.1016/j.combustflame.2011.06.018
  • Fayoux, A., Zähringer, K., Gicquel, O., and Rolon, J.C. 2005. Experimental and numerical determination of heat release in counterflow premixed laminar flames. Proc. Combust. Inst., 30(1), 251–257. doi:10.1016/j.proci.2004.08.210
  • Gao, Y., Chakraborty, N., and Swaminathan, N. 2014. Algebraic closure of scalar dissipation rate for large eddy simulations of turbulent premixed combustion. Combust. Sci. Technol., 186(10–11), 1309–1337. doi:10.1080/00102202.2014.934581
  • Hadjadj, A., and Kudryavtsev, A. 2005. Computation and flow visualization in high-speed aerodynamics. J. Turbul., 6(16), 1–25. https://doi.org/10.1080/14685240500209775.
  • Hartl, S., Geyer, D., Dreizler, A., Magnotti, G., Barlow, R.S., and Hasse, C. 2018. Regime identification from Raman/Rayleigh line measurements in partially premixed flames. Combust. Flame, 189, 126–141. doi:10.1016/j.combustflame.2017.10.024
  • Kathrotia, T., Riedel, U., Seipel, A., Moshammer, K., and Brockhinke, A. 2012. Experimental and numerical study of chemiluminescent species in low-pressure flames. Appl. Phys. B Lasers Opt., 107(3), 571–584. doi:10.1007/s00340-012-5002-0
  • Katsuki, M., and Hasegawa, T. 1998. The science and technology of combustion in highly preheated air. 27th Symp. Combust., 27, 3135–3146. doi:10.1016/S0082-0784(98)80176-8
  • Kiefer, J., Li, Z.S., Seeger, T., Leipertz, A., and Aldén, M. 2009. Planar laser-induced fluorescence of HCO for instantaneous flame front imaging in hydrocarbon flames. Proc. Combust. Inst., 32(1), 921–928. doi:10.1016/j.proci.2008.05.013
  • Kulatilaka, W.D., Frank, J.H., and Settersten, T.B. 2009. Interference-free two-photon LIF imaging of atomic hydrogen in flames using picosecond excitation. Proc. Combust. Inst., 32, 955–962. doi:10.1016/j.proci.2008.06.125
  • Li, Z.S., Li, B., Sun, Z.W., Bai, X.S., and Aldén, M. 2010. Turbulence and combustion interaction: high resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame. Combust. Flame, 157(6), 1087–1096. doi:10.1016/j.combustflame.2010.02.017
  • Lu, T.F., Yoo, C.S., Chen, J.H., and Law, C.K. 2010. Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis. J. Fluid Mech., 652, 45–64. doi:10.1017/S002211201000039X
  • Marshall, G., and Pitz, R.W. 2018. Evaluation of heat release indicators in lean premixed H2/air cellular tubular flames. Proc. Combust. Inst., 37(2), 2029–2036.
  • Medwell, P.R., Kalt, P.A.M., and Dally, B.B. 2007. Simultaneous imaging of OH, formaldehyde, and temperature of turbulent nonpremixed jet flames in a heated and diluted coflow. Combust. Flame, 148(1–2), 48–61. doi:10.1016/j.combustflame.2006.10.002
  • Medwell, P.R., Kalt, P.A.M., and Dally, B.B. 2009. Reaction zone weakening effects under hot and diluted oxidant stream conditions. Combust. Sci. Technol., 181(7), 937–953. doi:10.1080/00102200902904138
  • Menon, S. 2018. Multi-scale subgrid modelling of turbulent premixed combustion at engine relevant conditions. Combust. Sci. Technol, Special issue on UKCTRF Workshop 2018.
  • Minamoto, Y., and Swaminathan, N. 2014. Scalar gradient behaviour in MILD combustion. Combust. Flame, 161(4), 1063–1075. doi:10.1016/j.combustflame.2013.10.005
  • Minamoto, Y., Swaminathan, N., Cant, R.S., and Leung, T. 2014a. a Morphological and statistical features of reaction zones in MILD and premixed combustion. Combust. Flame, 161(11), 2801–2814. doi:10.1016/j.combustflame.2014.04.018
  • Minamoto, Y., Swaminathan, N., Cant, R.S., and Leung, T. 2014b. Reaction zones and their structure in MILD Combustion. Combust. Sci. Technol., 186(8), 1075–1096. doi:10.1080/00102202.2014.902814
  • Mulla, I.A., Dowlut, A., Hussain, T., Nikolaou, Z.M., Chakravarthy, S.R., Swaminathan, N., and Balachandran, R. 2016. Heat release rate estimation in laminar premixed flames using laser-induced fluorescence of CH2O and H-atom. Combust. Flame, 165, 373–383. doi:10.1016/j.combustflame.2015.12.023
  • Najm, H.N., Paul, P.H., Mueller, C.J., and Wyckoff, P.S. 1998. On the adequacy of certain experimental observables as measurements of flame burning rate. Combust. Flame, 113(3), 312–332. doi:10.1016/S0010-2180(97)00209-5
  • Nguyen, Q.-V., and Paul, P.H. 1996. The time evolution of a vortex-flame interaction observed via planar imaging of CH and OH. 26th Symp. Combust., 26(1), 357–364. doi:10.1016/S0082-0784(96)80236-0
  • Nikolaou, Z.M., and Swaminathan, N. 2014. Heat release rate markers for premixed combustion. Combust. Flame, 161(12), 3073–3084. doi:10.1016/j.combustflame.2014.05.019
  • Ozdemir, I.B., and Peters, N. 2001. Characteristics of the reaction zone in a combustor operating at mild combustion. Exp. Fluids, 30(6), 683–695. doi:10.1007/s003480000248
  • Paul, P.H., and Najm, H.N. 1998. Planar laser-induced fluorescence imaging of flame heat release rate. 27th Symp. Combust., 27(1), 43–50. doi:10.1016/S0082-0784(98)80388-3
  • Plessing, T., Peters, N., and Wünning, J.G. 1998. Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation. 27th Symp. Combust., 27, 3197–3204. doi:10.1016/S0082-0784(98)80183-5
  • Pope, S.B. 2013. Small scales, many species and the manifold challenges of turbulent combustion. Proc. Combust. Inst., 34(1), 1–31. doi:10.1016/j.proci.2012.09.009
  • Richter, M., Collin, R., Nygren, J., Aldén, M., Hildingsson, L., and Johansson, B. 2005. Studies of the combustion process with simultaneous formaldehyde and OH PLIF in a direct-injected HCCI engine. JSME Int. J. Ser. B, 48(4), 701–707. doi:10.1299/jsmeb.48.701
  • Rosell, J., Bai, X.-S., Sjoholm, J., Zhou, B., Li, Z., Wang, Z., Petersson, P., Li, Z., Richter, M., and Aldén, M. 2017. Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes. Combust. Flame, 182, 324–338. doi:10.1016/j.combustflame.2017.04.003
  • Sidey, J.A.M., Mastorakos, E., and Gordon, R.L. 2014. Simulations of autoignition and laminar premixed flames in methane/air mixtures diluted with hot products. Combust. Sci. Technol., 186(4–5), 453–465. doi:10.1080/00102202.2014.883217
  • Smooke, M.D., and Giovangigli, V. 1991. Formulation of the premixed and nonpremixed test problems. In Reduc. Kinet. Mech. Asymptot. Approx. Methane-Air Flames, (Ed.) Smooke, M.D., Lecture Notes in Physics Vol. 384, pp. 1–28. Berlin/Heidelberg: Springer Berlin Heidelberg.
  • Sorrentino, G., Sabia, P., de Joannon, M., Cavaliere, A., and Ragucci, R. 2016. The effect of diluent on the sustainability of MILD combustion in a cyclonic burner. Flow, Turbul. Combust., 96(2), 449–468. doi:10.1007/s10494-015-9668-3
  • Tanahashi, M., Murakami, S., Choi, G.-M., Fukuchi, Y., and Miyauchi, T. 2005. Simultaneous CHOH PLIF and stereoscopic PIV measurements of turbulent premixed flames. Proc. Combust. Inst., 30(1), 1665–1672. doi:10.1016/j.proci.2004.08.270
  • Wabel, T.M., Zhang, P., Zhao, X., Wang, H., Hawkes, E., and Steinberg, A.M. 2018. Assessment of chemical scalars for heat release rate measurement in highly turbulent premixed combustion including experimental factors. Combust. Flame, 194, 485–506. doi:10.1016/j.combustflame.2018.04.016
  • Wünning, J.A., and Wünning, J.G. 1997. Flameless oxidation to reduce thermal no-formation. Prog. Energy Combust. Sci., 23(1), 81–94. doi:10.1016/S0360-1285(97)00006-3
  • Yamashita, H., Shimada, M., and Takeno, T. 1996. A numerical study on flame stability at the transition point of jet diffusion flames. 26th Symp. Combust., 26(1), 27–34. doi:10.1016/S0082-0784(96)80196-2
  • Zhou, B., Kiefer, J., Zetterberg, J., Li, Z., and Aldén, M. 2014. Strategy for PLIF single-shot HCO imaging in turbulent methane/air flames. Combust. Flame, 161, 1566–1574. doi:10.1016/j.combustflame.2013.11.019