356
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Static Flame Stability of Circumferentially Arranged Fuel Port Inverse Jet Non-Premixed Flame Burner

ORCID Icon &
Pages 1493-1519 | Received 16 Jan 2019, Accepted 22 Apr 2019, Published online: 08 May 2019

References

  • Akbarzadeh, M., and Birouk, M. 2015. On the hysteresis phenomenon of turbulent lifted diffusion methane flame. Flow Turbul. Combust., 94, 479–493. doi:10.1007/s10494-014-9573-1.
  • Barakat, H., Kamal, M., Saad, H., and Eldeeb, W. 2015. Performance enhancement of inverse diffusion flame burners with distributed ports. P. I. Mech. Eng. A J. Pow., 229, 160–175.
  • Caffo, E., and Padovani, C. 1963. Flashback in premixed air flames. Combust. Flame., 7, 331–337. doi:10.1016/0010-2180(63)90208-6.
  • Cheng, T., Chao, Y.-C., Wu, C.-Y., Li, Y.-H., Nakamura, Y., Lee, K.-Y., Yuan, T., and Leu, T. 2005. Experimental and numerical investigation of microscale hydrogen diffusion flames. Proc. Combust. Inst., 30, 2489–2497. doi:10.1016/j.proci.2004.07.025.
  • Cheng, T., Chen, C.-P., Chen, C.-S., Li, Y.-H., Wu, C.-Y., and Chao, Y.-C. 2006. Characteristics of microjet methane diffusion flames. Combust. Theor. Model., 10, 861–881. doi:10.1080/13647830600551917a.
  • Dally, B., Fletcher, D., and Masri, A. 1998. Flow and mixing fields of turbulent bluff-body jets and flames. Combust. Theor. Model., 2, 193–219. doi:10.1088/1364-7830/2/2/006.
  • Dong, L., Cheung, C., and Leung, C. 2011. Combustion optimization of a port-array inverse diffusion flame jet. Energy, 36, 2834–2846. doi:10.1016/j.energy.2011.02.025.
  • Eickhoff, H., Lenze, B., and Leuckel, W. 1985. Experimental investigation on the stabilization mechanism of jet diffusion flames. In Symposium (International) on Combustion, The University of Michigan, Ann Arbor, MI; Elsevier, pp. 311–318.
  • Elbaz, A.M., and Roberts, W.L. 2014. Flame structure of methane inverse diffusion flame. Exp. Therm. Fluid Sci., 56, 23–32. doi:10.1016/j.expthermflusci.2013.11.011.
  • Elbaz, A.M., and Roberts, W.L. 2016. Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV. Fuel, 165, 447–461. doi:10.1016/j.fuel.2015.10.096.
  • Ganguly, R., and Puri, I.K. 2004. Nonpremixed flame control with microjets. Exp. Fluids., 36, 635–641. doi:10.1007/s00348-003-0749-z.
  • Gautam, T. 1984. Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol., 41, 17.
  • Gupta, A., and Beer, J. 1978. On combustion generated noise from turbulent diffusion gaseous flames. Appl. Acoust., 11, 35–55. doi:10.1016/0003-682X(78)90020-8.
  • Im, H.G., and Chen, J.H. 2002. Preferential diffusion effects on the burning rate of interacting turbulent premixed hydrogen-air flames. Combust. Flame., 131, 246–258. doi:10.1016/S0010-2180(02)00405-4.
  • Iyogun, C., and Birouk, M. 2009. On the stability of a turbulent non-premixed methane flame. Combust. Sci. Technol., 181, 1443–1463. doi:10.1080/00102200903182742.
  • Jejurkar, S.Y., and Mishra, D. 2011. Flame stability studies in a hydrogen–air premixed flame annular microcombustor. Int. J. Hydrogen Energy., 36, 7326–7338. doi:10.1016/j.ijhydene.2011.02.098.
  • Lee, T.-W., Fenton, M., and Shankland, R. 1997. Effects of variable partial premixing on turbulent jet flame structure. Combust. Flame., 109, 536–548. doi:10.1016/S0010-2180(97)00033-3.
  • Lewis, B., and von Elbe, G. 1961. Combustion, Flames and Explosions of Gases, 2nd edn., Academic Press Inc., New York.
  • Lin, C.-K., Jeng, M.-S., and Chao, Y.-C. 1993. The stabilization mechanism of the lifted jet diffusion flame in the hysteresis region. Exp. Fluids., 14, 353–365. doi:10.1007/BF00189494.
  • Lucchesi, M., Abdelgadir, A., Attili, A., and Bisetti, F. 2017. Simulation and analysis of the soot particle size distribution in a turbulent nonpremixed flame. Combust. Flame., 178, 35–45. doi:10.1016/j.combustflame.2017.01.002.
  • Mahesh, S., and Mishra, D. 2008. Flame stability and emission characteristics of turbulent LPG IDF in a backstep burner. Fuel., 87, 2614–2619. doi:10.1016/j.fuel.2008.02.001.
  • Mahesh, S., and Mishra, D. 2011. Study of the turbulent inverse diffusion flame in recessed backstep and coaxial burners. Combust. Explos. Shock Waves., 47, 274–279. doi:10.1134/S0010508211030038.
  • Miao, J., Leung, C., Cheung, C., Huang, Z., and Jin, W. 2016. Effect of H 2 addition on OH distribution of LPG/Air circumferential inverse diffusion flame. Int. J. Hydrogen Energy, 41, 9653–9663. doi:10.1016/j.ijhydene.2016.02.105.
  • Rabee, B.A. 2018. The effect of inverse diffusion flame burner-diameter on flame characteristics and emissions. Energy, 160, 1201–1207. doi:10.1016/j.energy.2018.07.061.
  • Saito, K., Williams, F., and Gordon, A. 1986. Structure of laminar coflow methane–air diffusion flames. J. Heat Transfer, 108, 640–648. doi:10.1115/1.3246984.
  • Sobiesiak, A., and Wenzell, J.C. 2005. Characteristics and structure of inverse flames of natural gas. Proc. Combust. Inst., 30, 743–749. doi:10.1016/j.proci.2004.08.173.
  • Sung, C., Liu, J., and Law, C. 1995. Structural response of counterflow diffusion flames to strain rate variations. Combust. Flame, 102, 481–492. doi:10.1016/0010-2180(95)00041-4.
  • Sze, L., Cheung, C., and Leung, C. 2004. Temperature distribution and heat transfer characteristics of an inverse diffusion flame with circumferentially arranged fuel ports. Int. J. Heat Mass Transf., 47, 3119–3129. doi:10.1016/j.ijheatmasstransfer.2004.02.015.
  • Sze, L., Cheung, C., and Leung, C. 2006a. Appearance, temperature, and NO x emission of two inverse diffusion flames with different port design. Combust. Flame, 144, 237–248. doi:10.1016/j.combustflame.2005.07.008.
  • Takahashi, F., and Schmoll, W.J. 1991. Lifting criteria of jet diffusion flames. In Symposium (International) on Combustion, The Combustion Institute, Pillsburgh, PA; Elsevier, pp. 677–683.
  • Wu, C.-Y., Chao, Y.-C., Cheng, T.-S., Li, Y.-H., Lee, K.-Y., and Yuan, T. 2006. The blowout mechanism of turbulent jet diffusion flames. Combust. Flame, 145, 481–494. doi:10.1016/j.combustflame.2006.01.004.
  • Wu, K.-T., and Essenhigh, R.H. 1985. Mapping and structure of inverse diffusion flames of methane. In Symposium (International) on Combustion, The University of Michigan, Ann Arbor, MI; Elsevier,pp. 1925–1932.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.