439
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Stability of Buoyant Inverse Diffusion Methane Flames with Confinement Effects

, &
Pages 1650-1667 | Received 31 Oct 2018, Accepted 12 May 2019, Published online: 23 May 2019

References

  • Anderson, K.R., Mahalingam, S., and Hertzberg, J. 1999. A two-dimensional planar computational investigation of flame broadening in confined non-premixed jets. Combust. Flame, 118, 233–247. doi:10.1016/S0010-2180(98)00143-6
  • Biswas, G., and Sarkar, S. 2009. Effect of thermal buoyancy on vortex shedding past a circular cylinder in cross-flow at low Reynolds numbers. Int. J. Heat Mass Tran., 52, 1897–1912. doi:10.1016/j.ijheatmasstransfer.2008.08.034
  • Blevins, L.G., Fletcher, R.A., Benner, B.A., Steel, E.B., and Mulholland, G.W. 2002. The existence of young soot in the exhaust of inverse diffusion flames. Proc. Combust. Inst., 29, 2325–2333. doi:10.1016/S1540-7489(02)80283-8
  • Bradley, D., and Entwistle, A. 1961. Determination of the emissivity, for total radiation, of small diameter Platinum-10% Rhodium wires in the temperature range 600-1450 C. Br. J. Appl. Phys., 12, 708. doi:10.1088/0508-3443/12/12/328
  • Carpio, J., Sánchez-Sanz, M., and Fernández-Tarrazo, E. 2012. Pinch-off in forced and non-forced, buoyant laminar jet diffusion flames, Combust. Flame, 159, 161–169. doi:10.1016/j.combustflame.2011.06.008
  • Cetegen, B.M., and Ahmed, T.A. 1993. Experiments on the periodic instability of buoyant plumes and pool fires. Combust. Flame, 93, 157–184. doi:10.1016/0010-2180(93)90090-P
  • Cetegen, B.M., and Dong, Y. 2000. Experiments on the instability modes of buoyant diffusion flames and effects of ambient atmosphere on the instabilities. Exper. Fluids, 28, 546–558. doi:10.1007/s003480050415
  • Chao, Y.C., and Wu, C.Y. 2000. A study of the interaction between a jet flame and a lateral wall. Combust. Sci. Technol., 158, 93–113. doi:10.1080/00102200008947329
  • Chatterjee, D., and Mondal, B. 2011. Effect of thermal buoyancy on vortex shedding behind a square cylinder in cross flow at low Reynolds numbers. Int. J. Heat Mass Tran., 54, 5262–5274. doi:10.1016/j.ijheatmasstransfer.2011.08.016
  • Chen, L.D., and Roquemore, W.M. 1986. Visualization of jet flames. Combust. Flame, 66, 81–86. doi:10.1016/0010-2180(86)90035-0
  • Chen, L.D., Seaba, J.P., Roquemore, W.M., and Goss, L.P. 1989. Buoyant diffusion flames. Proc. Combust. Inst., 22, 677–684.
  • Chu, C.C., Wang, C.T., and Chang, C.C. 1995. A vortex ring impinging on a solid plane surface—vortex structure and surface force. Phys. Fluids, 7, 1391–1401. doi:10.1063/1.868527
  • Coats, C.M. 1996. Coherent structures in combustion. Prog. Energy Combust. Sci., 22, 427–509. doi:10.1016/S0360-1285(96)00011-1
  • Davis, R.W., Moore, E.F., Santoro, R.J., and Ness, J.R. 1990. Isolation of buoyancy effects in jet diffusion flame experiments. Combust. Sci. Technol., 73, 625–635. doi:10.1080/00102209008951674
  • Doligalski, T.L., Smith, C.R., and Walker, J.D.A. 1994. Vortex interactions with walls. Ann. Rev. Fluid Mech., 26, 573–616. doi:10.1146/annurev.fl.26.010194.003041
  • Durox, D., Yuan, T., and Villermaux, E. 1997. The effect of buoyancy on flickering in diffusion flames. Combust. Sci. Technol., 124, 277–294. doi:10.1080/00102209708935648
  • Ellzey, J.L., and Oran, E.S. 1991. Effects of heat release and gravity on an unsteady diffusion flame. Proc. Combust. Inst., 23, 1635–1640. doi:10.1016/S0082-0784(06)80436-4
  • Evans, M., Medwell, P., and Tian, Z. 2015. Modeling lifted jet flames in a heated coflow using an optimized eddy dissipation concept model. Combust. Sci. Technol., 187, 1093–1109. doi:10.1080/00102202.2014.1002836
  • Ghoniem, A.F., Lakkis, I., and Soteriou, M. 1996. Numerical simulation of the dynamics of large fire plumes and the phenomenon of puffing. Proc. Combust. Inst., 26, 1531–1539. doi:10.1016/S0082-0784(96)80375-4
  • Gotoda, H., Asano, Y., Chuah, K.H., and Kushida, G. 2009. Nonlinear analysis on dynamic behavior of buoyancy-induced flame oscillation under swirling flow. Int. J. Heat Mass Tran., 52, 5423–5432. doi:10.1016/j.ijheatmasstransfer.2009.06.035
  • Grinstein, F.F., and Kailasanath, K. 1995. Three-dimensional numerical simulations of unsteady reactive square jets. Combust. Flame, 100, 2–10. doi:10.1016/0010-2180(94)00095-A
  • Grinstein, F.F., and Kailasanath, K. 1996. Exothermicity and three-dimensional effects in unsteady propane square jets. Proc. Combust. Inst., 26, 91–96. doi:10.1016/S0082-0784(96)80204-9
  • Huang, C.C., and Lin, T.F. 1994. Buoyancy induced flow transition in mixed convective flow of air through a bottom heated horizontal rectangular duct. Int. J. Heat Mass Tran., 37, 1235–1255. doi:10.1016/0017-9310(94)90209-7
  • Issa, R.I. 1986. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys., 62, 40–65. doi:10.1016/0021-9991(86)90099-9
  • Jasak, H. 1996. Error analysis and estimation for finite volume method with applications to fluid flow. Ph.D. thesis. Imperial College, University of London, London.
  • Jiang, X., and Luo, K. 2000a. Spatial direct numerical simulation of the large vortical structures in forced plumes. Flow Turbul. Combust., 64, 43–69. doi:10.1023/A:1009950127478
  • Jiang, X., and Luo, K.H. 2000b. Combustion-induced buoyancy effects of an axisymmetric reactive plume. Proc. Combust. Inst, 28, 1989–1995. doi:10.1016/S0082-0784(00)80605-0
  • Jiang, X., and Luo, K.H. 2003. Dynamics and structure of transitional buoyant jet diffusion flames with side-wall effects. Combust. Flame, 133, 29–45. doi:10.1016/S0010-2180(02)00539-4
  • Jiin-Yuh, J., and Wen-Jeng, C. 1988. Vortex instability of buoyancy-induced inclined boundary layer flow in a saturated porous medium. Int. J. Heat Mass Tran., 31, 759–767. doi:10.1016/0017-9310(88)90133-0
  • Kang, K.T., Hwang, J.Y., Chung, S.H., and Lee, W. 1997. Soot zone structure and sooting limit in diffusion flames: comparison of counterflow and co-flow flames. Combust. Flame, 109, 266–281. doi:10.1016/S0010-2180(96)00163-0
  • Kaplan, C.R., and Kailasanath, K. 2001. Flow-field effects on soot formation in normal and inverse methane–air diffusion flames. Combust. Flame, 124, 275–294. doi:10.1016/S0010-2180(00)00196-6
  • Katta, V.R., Goss, L.P., and Roquemore, W.M. 1994. Numerical investigations of transitional H2/N2 jet diffusion flames. Aiaa J., 32, 84–94. doi:10.2514/3.11954
  • Katta, V.R., and Roquemore, W.M. 1993. Role of inner and outer structures in transitional jet diffusion flame. Combust. Flame, 92, 274–282. doi:10.1016/0010-2180(93)90039-6
  • Law, C.K. 2010. Combustion Physics, Cambridge University Press, New York.
  • Lee, G.W., Jurng, J., and Hwang, J. 2004. Formation of Ni-catalyzed multiwalled carbon nanotubes and nanofibers on a substrate using an ethylene inverse diffusion flame. Combust. Flame, 139, 167–175. doi:10.1016/j.combustflame.2004.08.009
  • Leonard, B.P. 1988. Simple high‐accuracy resolution program for convective modelling of discontinuities. Int. J. Numer. Methods Fluids, 8, 1291–1318. doi:10.1002/fld.1650081013
  • Liñán, A., Vera, M., and Sánchez, A.L. 2015. Ignition, liftoff, and extinction of gaseous diffusion flames. Annu. Rev. Fluid Mech., 47, 293–314. doi:10.1146/annurev-fluid-010814-014711
  • Luton, A., Ragab, S., and Telionis, D. 1995. Interaction of spanwise vortices with a boundary layer. Phys. Fluids, 7, 2757–2765. doi:10.1063/1.868654
  • Lysenko, D.A., Ertesvåg, I.S., and Rian, K.E. 2014. Numerical simulations of the sandia flame d using the eddy dissipation concept, Flow Turb. Combust., 93, 665–687.
  • McEnally, C.S., Köylü, Ü.Ö., Pfefferle, L.D., and Rosner, D.E. 1997. Soot volume fraction and temperature measurements in laminar nonpremixed flames using thermocouples. Combust. Flame, 109, 701–720. doi:10.1016/S0010-2180(97)00054-0
  • Menon, S., Yeung, P.-K., and Kim, W.-W. 1996. Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence. Comput. Fluids, 25, 165–180.
  • Mikofski, M.A., Williams, T.C., Shaddix, C.R., and Blevins, L.G. 2006. Flame height measurement of laminar inverse diffusion flames. Combust. Flame, 146, 63–72. doi:10.1016/j.combustflame.2006.04.006
  • Morvan, D., Porterie, B., Larini, M., and Loraud, J. 1998. Numerical simulation of turbulent diffusion flame in cross flow. Combust. Sci. Technol., 140, 93–122. doi:10.1080/00102209808915769
  • Poinsot, T., and Veynante, D. 2005. Theoretical and Numerical Combustion, RT Edwards, Inc., Philadelphia.
  • Saji, C.B., Balaji, C., and Sundararajan, T. 2008. Investigation of soot transport and radiative heat transfer in an ethylene jet diffusion flame. Int. J. Heat Mass Tran., 51, 4287–4299. doi:10.1016/j.ijheatmasstransfer.2008.02.010
  • Santoro, R.J., Yeh, T.T., Horvath, J.J., and Semerjian, H.G. 1987. The transport and growth of soot particles in laminar diffusion flames. Combust. Sci. Technol., 53, 89–115. doi:10.1080/00102208708947022
  • Shaddix, C.R. 1999. Correcting Thermocouple Measurements for Radiation Loss: A Critical Review, Sandia National Labs., Livermore, CA (US).
  • Shaddix, C.R., Palotás, Á.B., Megaridis, C.M., Choi, M.Y., and Yang, N.Y. 2005. Soot graphitic order in laminar diffusion flames and a large-scale JP-8 pool fire. Int. J. Heat Mass Tran., 48, 3604–3614. doi:10.1016/j.ijheatmasstransfer.2005.03.006
  • Shaddix, C.R., and Williams, T.C. 2009. Measurements of the velocity field in laminar ethylene inverse jet diffusion flames. Combust. Flame, 156, 942–945. doi:10.1016/j.combustflame.2009.01.017
  • Shu, Z., Aggarwal, S.K., Katta, V.R., and Puri, I.K. 1997. Flame-vortex dynamics in an inverse partially premixed combustor: the Froude number effects. Combust. Flame, 111, 276–295. doi:10.1016/S0010-2180(97)00018-7
  • Sidebotham, G.W., and Glassman, I. 1992a. Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames. Combust. Flame, 90, 269–283. doi:10.1016/0010-2180(92)90088-7
  • Sidebotham, G.W., and Glassman, I. 1992b. Effect of oxygen addition to a near-sooting ethene inverse diffusion flame. Combust. Sci. Technol., 81, 207–219. doi:10.1080/00102209208951802
  • Smith, M.C., Haines, D.A., and Main, W.A. 1989. Growth of buoyancy-induced longitudinal vortex pairs in a laminar flow. Int. J. Heat Mass Tran., 32, 1879–1885. doi:10.1016/0017-9310(89)80158-9
  • Snegirev, A.Y., Marsden, J., Francis, J., and Makhviladze, G. 2004. Numerical studies and experimental observations of whirling flames. Int. J. Heat Mass Tran., 47, 2523–2539. doi:10.1016/j.ijheatmasstransfer.2004.02.002
  • Sobiesiak, A., and Wenzell, J.C. 2005. Characteristics and structure of inverse flames of natural gas. Proc. Combust. Inst., 30, 743–749. doi:10.1016/j.proci.2004.08.173
  • Tang, F., Hu, L., Wang, Q., and Ding, Z. 2014. Flame pulsation frequency of conduction-controlled rectangular hydrocarbon pool fires of different aspect ratios in a sub-atmospheric pressure. Int. J. Heat Mass Tran., 76, 447–451. doi:10.1016/j.ijheatmasstransfer.2014.04.047
  • Tieszen, S.R. 2001. On the fluid mechanics of fires. Annu. Rev. Fluid Mech., 33, 67–92. doi:10.1146/annurev.fluid.33.1.67
  • Tieszen, S.R., Nicolette, V.F., Gritzo, L.A., Moya, J.L., Holen, J.K., and Murray, D. 1996. Vortical Structures in Pool Fires: Observation, Speculation, and Simulation, Sandia National Labs., Albuquerque, NM (United States).
  • Unrau, C.J., Axelbaum, R.L., Biswas, P., and Fraundorf, P. 2007. Synthesis of single-walled carbon nanotubes in oxy-fuel inverse diffusion flames with online diagnostics. Proc. Combust. Inst, 31, 1865–1872. doi:10.1016/j.proci.2006.08.009
  • Weller, H.G., Tabor, G., Jasak, H., and Fureby, C. 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comp. Phys., 12, 620–631. doi:10.1063/1.168744
  • Wu, K.T., and Essenhigh, R.H. 1985. Mapping and structure of inverse diffusion flames of methane. Proc. Combust. Inst., 20, 1925–1932. doi:10.1016/S0082-0784(85)80691-3
  • Xia, X., and Zhang, P. 2018. A vortex-dynamical scaling theory for flickering buoyant diffusion flames. J. Fluid Mech., 855, 1156–1169. doi:10.1017/jfm.2018.707
  • Xu, F., Liu, X., and Stephen, D.T. 2006. Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames. Carbon, 44, 570–577. doi:10.1016/j.carbon.2005.07.043
  • Yan, Z., and Holmstedt, G. 1999. A two-equation turbulence model and its application to a buoyant diffusion flame. Int. J. Heat Mass Tran., 42, 1305–1315. doi:10.1016/S0017-9310(98)00206-3
  • Yoshizawa, A., and Horiuti, K. 1985. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn., 54, 2834–2839. doi:10.1143/JPSJ.54.2834
  • Zhu, X., Xia, X., and Zhang, P. 2018. Near-field flow stability of buoyant methane/air inverse diffusion flames. Combust. Flame, 191, 66–75. doi:10.1016/j.combustflame.2018.01.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.