228
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Methane/Air Auto-Ignition Based on Global Quasi-Linearization (GQL) and Directed Relation Graph (DRG): Implementation and Comparison

ORCID Icon, , &
Pages 1802-1824 | Received 16 Oct 2018, Accepted 27 May 2019, Published online: 04 Jun 2019

References

  • Arvidsson, A., T. Løv°as, and F. Mauss. 2007. An automatic sparse matrix solver for reduced reaction kinetics. Proceeding: 21st International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Poitiers, France’.
  • Bodenstein, M. 1913. Eine theorie der photochemischen reaktionsgeschwindigkeiten. Zeitschrift Für Physikalische Chemie 85 (1):329–97. doi:10.1515/zpch-1913-0112.
  • Boivin, P. 2011. Reduced-kinetic mechanisms for hydrogen and syngas combustion including autoignition.
  • Bykov, V., V. Gol’dshtein, and U. Maas. 2008. Simple global reduction technique based on decomposition approach. Combust. Theor. Model. 12 (2):389–405. doi:10.1080/13647830701830251.
  • Bykov, V., I. Goldfarb, and V. Gol’dshtein. 2006. Singularly perturbed vector fields. J. Phys. Conf. Ser. 55: 28. IOP Publishing
  • Bykov, V., and V. Goldshtein. 2013. Fast and slow invariant manifolds in chemical kinetics. Comput. Math. Appl. 65 (10):1502–15. doi:10.1016/j.camwa.2013.01.040.
  • Bykov, V., and U. Maas. 2009. Investigation of the hierarchical structure of kinetic models in ignition problems. Zeitschrift Für Physikalische Chemie 223 (4–5):461–79. doi:10.1524/zpch.2009.6039.
  • Campbell, C. T. 1994. Future directions and industrial perspectives micro-and macro- kinetics: Their relationship in heterogeneous catalysis. Top. Catal. 1 (3):353–66. doi:10.1007/BF01492288.
  • Chapman, D. L., and L. K. Underhill. 1913. Lv.the interaction of chlorine and hydrogen. the influence of mass. J. Chem. Soc. Trans. 103:496–508. doi:10.1039/CT9130300496.
  • Chen, J.-Y., and Y. Tham. 2008. Speedy solution of quasi-steady-state species by combination of fixed-point iteration and matrix inversion. Combust. Flame 153 (4):634–46. doi:10.1016/j.combustflame.2007.12.006.
  • Deuflhard, P. 1985. Recent progress in extrapolation methods for ordinary differential equations. SIAM Rev. 27 (4):505–35. doi:10.1137/1027140.
  • Deuflhard, P., E. Hairer, and J. Zugck. 1987. One-step and extrapolation methods for differential-algebraic systems. Numerische Mathematik 51 (5):501–16. doi:10.1007/BF01400352.
  • Dumesic, J. 1999. Analyses of reaction schemes using de donder relations. J. Catal. 185 (2):496–505. doi:10.1006/jcat.1999.2523.
  • Er-Raiy, A., Z. Bouali, J. Réveillon, and A. Mura. 2018. Optimized single-step (oss) chemistry models for the simulation of turbulent premixed flame propagation. Combust. Flame 192:130–48. doi:10.1016/j.combustflame.2018.01.038.
  • Felden, A. 2017. Development of analytically reduced chemistries (ARC) and applications in large eddy simulations (LES) of turbulent combustion, PhD thesis. University Toulouse
  • Golub, G. 1992. Cf van loan, 1983. matrix computations.
  • Gorban, A. N., and I. V. Karlin. 2003. Method of invariant manifold for chemical kinetics. Chem. Eng. Sci. 58 (21):4751–68. doi:10.1016/j.ces.2002.12.001.
  • Goussis, D. A., and U. Maas. 2011. Model reduction for combustion chemistry. In Turbulent combustion modeling, 193–220. Springer, Dordrecht.
  • Hughes, K., T. Turanyi, A. Clague, and M. Pilling. 2001. Development and testing of a comprehensive chemical mechanism for the oxidation of methane. Int. J. Chem. Kinet. 33 (9):513–38. doi:10.1002/kin.1048.
  • Jones, W., and S. Rigopoulos. 2005. Rate-controlled constrained equilibrium: Formulation and application to nonpremixed laminar flames. Combust. Flame 142 (3):223–34. doi:10.1016/j.combustflame.2005.03.008.
  • Lam, S., and D. Goussis 1989. Understanding complex chemical kinetics with computational singular perturbation. Symposium (International) on Combustion, Vol. 22, 931–41. Elsevier.
  • Lam, S., and D. Goussis. 1991. Conventional asymptotics and computational singular perturbation for simplified kinetics modelling. In Reduced kinetic mechanisms and asymptotic approximations for methane-air flames, 227–42. Springer
  • Lam, S., and D. Goussis. 1994. The csp method for simplifying kinetics. Int. J. Chem. Kinet. 26 (4):461–86. doi:10.1002/(ISSN)1097-4601.
  • Lebiedz, D. 2004. Computing minimal entropy production trajectories: An approach to model reduction in chemical kinetics. J. Chem. Phys. 120 (15):6890–97. doi:10.1063/1.1652428.
  • Li, S., and F. Williams. 2000. Reaction mechanisms for methane ignition. ASME Turbo Expo Munich, Germany, 2000: Power for Land, Sea, and Air, American Society of Mechanical Engineers, V002T02A061–V002T02A061.
  • Liang, L., J. G. Stevens, and J. T. Farrell. 2009. A dynamic adaptive chemistry scheme for reactive flow computations. Proc. Combust. Inst. 32 (1):527–34. doi:10.1016/j.proci.2008.05.073.
  • Løv°as, T. 2012. Model reduction techniques for chemical mechanisms. INTECH Open Access Publisher.
  • Lu, T., and C. K. Law. 2005. A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30 (1):1333–41. doi:10.1016/j.proci.2004.08.145.
  • Lu, T., and C. K. Law. 2006a. Linear time reduction of large kinetic mechanisms with directed relation graph: N-heptane and iso-octane. Combust. Flame 144 (1):24–36. doi:10.1016/j.combustflame.2005.02.015.
  • Lu, T., and C. K. Law. 2006b. On the applicability of directed relation graphs to the reduction of reaction mechanisms. Combust. Flame 146 (3):472–83. doi:10.1016/j.combustflame.2006.04.017.
  • Lu, T., and C. K. Law. 2008. A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with no chemistry. Combust. Flame 154 (4):761–74. doi:10.1016/j.combustflame.2008.04.025.
  • Lu, T., M. Plomer, Z. Luo, S. M. Sarathy, W. J. Pitz, S. Som, and D. E. Longman. 2011. Directed relation graph with expert knowledge for skeletal mechanism reduction, Connecticut, United States. US National Combustion Institute Meeting.
  • Luo, Z., T. Lu, and J. Liu. 2011. A reduced mechanism for ethylene/methane mixtures with excessive no enrichment. Combust. Flame 158 (7):1245–54. doi:10.1016/j.combustflame.2010.12.009.
  • Luo, Z., T. Lu, M. J. Maciaszek, S. Som, and D. E. Longman. 2010. A reduced mechanism for high-temperature oxidation of biodiesel surrogates. Energy & Fuels 24 (12):6283–93. doi:10.1021/ef1012227.
  • Maas, U., and S. B. Pope. 1992a. Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. Symposium (International) on Combustion, Vol. 24, 103–12. Elsevier.
  • Maas, U., and S. B. Pope. 1992b. Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combust. Flame 88 (3):239–64. doi:10.1016/0010-2180(92)90034-M.
  • Maas, U., and J. Warnatz. 1988. Ignition processes in hydrogen/oxygen mixtures. Combust. Flame 74 (1):53–69. doi:10.1016/0010-2180(88)90086-7.
  • Niemeyer, K. E., and C. Sung. 2011. On the importance of graph search algorithms for DRGEP-based mechanism reduction methods. Combust. Flame 158 (1):1439–43. doi:10.1016/j.combustflame.2010.12.010.
  • Niemeyer, K. E., C.-J. Sung, and M. P. Raju. 2010. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis. Combust. Flame 157 (9):1760–70. doi:10.1016/j.combustflame.2009.12.022.
  • Pepiot-Desjardins, P., and H. Pitsch. 2008. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combust. Flame 154 (1):67–81. doi:10.1016/j.combustflame.2007.10.020.
  • Reid, I., C. Robinson, and D. Smith (1985), Spontaneous ignition of methane: Measurement and chemical model, Symposium (International) on Combustion, Vol. 20, 1833–43. Elsevier.
  • Shen, X., X. Yang, J. Santner, J. Sun, and Y. Ju. 2015. Experimental and kinetic studies of acetylene flames at elevated pressures. Proc. Combust. Inst. 35 (1):721–28. doi:10.1016/j.proci.2014.05.106.
  • Shi, Y., H.-W. Ge, J. L. Brakora, and R. D. Reitz. 2010. Automatic chemistry mechanism reduction of hydrocarbon fuels for hcci engines based on drgep and pca methods with error control. Energy & Fuels 24 (3):1646–54. doi:10.1021/ef901469p.
  • Skinner, L. A. 2011. Singular perturbation theory. Springer Science & Business Media, Berlin/Heidelberg. Germany.
  • Smith, G., Y. Tao, and H. Wang. 2016. Foundational fuel chemistry model version 1.0 (ffcm-1).
  • Tomlin, A. S., T. Turányi, and M. J. Pilling. 1997. Mathematical tools for the construction, investigation and reduction of combustion mechanisms. In Comprehensive chemical kinetics, Vol. 35, 293–437. Elsevier.
  • Tosatto, L., B. A. V. Bennett, and M. D. Smooke. 2013. Comparison of different drg-based methods for the skeletal reduction of jp-8 surrogate mechanisms. Combust. Flame 160 (9):1572–82. doi:10.1016/j.combustflame.2013.03.024.
  • Turányi, T., and A. S. Tomlin. 2016. Analysis of kinetic reaction mechanisms. Springer, Berlin/Heidelberg, Germany.
  • Turns, S. R.. 1996. An introduction to combustion, Vol. 499. New York: McGraw-Hill
  • UCSD. 2014. Chemical-kinetic mechanisms for combustion applications, San Diego mechanism web page, Mechanical and Aerospace Engineering (Combustion Research). University of California at San Diego. Accessed. http://combustion.ucsd.edu.
  • Wang, W., and B. Rogg. 1993. Premixed ethylene/air and ethane/air flames: Reduced mechanisms based on inner iteration. In Reduced kinetic mechanisms for applications in combustion systems, 76–101. Springer, Berlin/Heidelberg, Germany.
  • Warnatz, J., U. Maas, R. W. Dibble, and J. Warnatz. 1996. Combustion, Vol. 3. Springer, Berlin/Heidelberg, Germany.
  • Yu, C., V. Bykov, and U. Maas. 2018. Global quasi-linearization (gql) versus qssa for a hydrogen-air auto-ignition problem. Phys. Chem. Chem. Phys.20, 10770–10779.
  • Zhao, H., J. Fu, F. M. Haas, and Y. Ju. 2017. Effect of prompt dissociation of formyl radical on 1,3,5-trioxane and CH2O laminar flame speeds with CO2 dilution at elevated pressure. Combust. Flame 183:253–60. doi:10.1016/j.combustflame.2017.05.005.
  • Zheng, X., T. Lu, and C. Law. 2007. Experimental counterflow ignition temperatures and reaction mechanisms of 1, 3-butadiene. Proc. Combust. Inst. 31 (1):367–75. doi:10.1016/j.proci.2006.07.182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.