258
Views
14
CrossRef citations to date
0
Altmetric
Research Article

From Cells to Residues: Flame-Retarded Rigid Polyurethane Foams

, &
Pages 2209-2237 | Received 12 Nov 2018, Accepted 17 Jun 2019, Published online: 27 Jun 2019

References

  • Ashida, K. 2007. ‘Polyurethane foams’. In Polyurethane and related foams: chemistry and technology, 9781587161599, 65–100. Boca Raton, United States: CRC Press.
  • ASTM International (2015) ‘ ASTM D3576: 2015 - Standard Test Method for Cell Size of Rigid Cellular Plastics ‘, West Conshohocken, PA, ASTM.
  • Babrauskas, V. 2002. Heat Release Rates. In SFPE handbook of fire protection engineering, ed. P. E. DiNenno and W. D. Walton, 3–37. Quincy, MA, USA: National Fire Protection Association.
  • Bian, X. C., J. H. Tang, Z. M. Li, Z. Y. Lu, and A. Lu. 2007. Dependence of flame-retardant properties on density of expandable graphite filled rigid polyurethane foam. J. Appl. Polym. Sci 104 (5):3347–55. doi:10.1002/app.25933.
  • Branca, C., C. Di Blasi, A. Casu, V. Morone, and C. Costa. 2003. Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion. Thermochim Acta 399 (1–2):127–37. doi:10.1016/S0040-6031(02)00455-0.
  • Brehme, S., B. Schartel, J. Goebbels, O. Fischer, D. Pospiech, Y. Bykov, and M. Döring. 2011. Phosphorus polyester versus aluminium phosphinate in poly(butylene terephthalate) (PBT): Flame retardancy performance and mechanisms. Polym. Degrad. Stab. 96 (5):875–84. doi:10.1016/j.polymdegradstab.2011.01.035.
  • Cao, Z.-J., X. Dong, T. Fu, S.-B. Deng, W. Liao, and Y.-Z. Wang. 2017. Coated vs. naked red phosphorus: A comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams. Polym. Degrad. Stab. 136 (SupplementC):103–11. doi:10.1016/j.polymdegradstab.2016.12.004.
  • Chen, Y., L. Li, W. Wang, and L. Qian. 2017. Preparation and characterization of surface-modified ammonium polyphosphate and its effect on the flame retardancy of rigid polyurethane foam. J. Appl. Polym. Sci 134 (40):45369-n/a. doi:10.1002/app.v134.40.
  • Cleary, T. G., and J. G. Quintiere. 1991. Flammability Characterization of Foam Plastics. In NISTIR 4664; national institute of standards and technology,1-130. Gaithersburg, MD, USA: NIST.
  • Deng, C., H. Yin, R.-M. Li, S.-C. Huang, B. Schartel, and Y.-Z. Wang. 2017. Modes of action of a mono-component intumescent flame retardant MAPP in polyethylene-octene elastomer. Polym. Degrad. Stab. 138:142–50. doi:10.1016/j.polymdegradstab.2017.03.006.
  • Dittrich, B., K.-A. Wartig, D. Hofmann, R. Mülhaupt, and B. Schartel. 2013a. Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites. Polym. Adv. Technol 24 (10):916–26. doi:10.1002/pat.3165.
  • Dittrich, B., K.-A. Wartig, D. Hofmann, R. Mülhaupt, and B. Schartel. 2013b. Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym. Degrad. Stab. 98 (8):1495–505. doi:10.1016/j.polymdegradstab.2013.04.009.
  • Drysdale, D. D. 1986. ‘Fundamentals of the Fire Behaviour of Cellular Polymers’. In Fire and Cellular Polymers, ed. J. M. Buist, S. J. Grayson, and W. D. Woolley, 61–75. Dordrecht: Springer Netherlands.
  • Engels, H.-W., H.-G. Pirkl, R. Albers, R. W. Albach, J. Krause, A. Hoffmann, H. Casselmann, and J. Dormish. 2013. Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges. Angewandte Chemie Inter. Ed 52 (36):9422–41. doi:10.1002/anie.201302766.
  • Glicksman, L. R. 1994. ‘Heat transfer in foams’. In Low density cellular plastics: Physical basis of behaviour, ed. N. C. Hilyard and A. Cunningham, 104–52. Dordrecht: Springer Netherlands.
  • Günther, M., A. Lorenzetti, and B. Schartel. 2018. Fire Phenomena of Rigid Polyurethane Foams. Polym. 10 (10):1166. doi:10.3390/polym10101166.
  • Hidalgo, J. P., J. L. Torero, and S. Welch. 2018. Fire performance of charring closed cell polymeric insulation materials: Polyisocyanurate and phenolic foam. Fire. Mat 42:358–73. doi:10.1002/fam.v42.4.
  • Hilado, C. J. 1967. Flammability Characteristics of Cellular Plastics. Ind. Eng. Chem. Pro. Res. Dev 6:154–66. doi:10.1021/i360023a004.
  • Hirschler, M. M., and S. Shakir. 1991. Comparison of the fire performance of various upholstered furniture composite combination (fabric foam) in 2 rate of heat release calorimeters - cone and ohio-state-university instruments. J. Fire Sci 9 (3):223–48. doi:10.1177/073490419100900303.
  • International Organization for Standardization (1991) ‘ISO 8301:1991: Thermal insulation - Determination of steady-state thermal resistance and related properties - Heat flow meter apparatus’, Geneva, Switzerland: ISO.
  • International Organization for Standardization. 2009. ISO 845:2009: Cellular plastics and rubbers - Determination of apparent density. Geneva, Switzerland: ISO.
  • International Organization for Standardization. 2014a. ISO 844:2014: Rigid cellular plastics - Determination of compression properties, Geneva, Switzerland: ISO.
  • International Organization for Standardization. 2014b. ISO 11357-4:2014: Plastics – Differential scanning calorimetry (DSC) – Part 4: Determination of specific heat capacity. Geneva, Switzerland: ISO.
  • International Organization for Standardization. 2015. ISO 5660-1:2015: Reaction-to-fire tests - Heat release, smoke production and mass loss rate - Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Geneva, Switzerland: ISO.
  • International Organization for Standardization. 2017. ISO 4589-2:2017: Plastics – Determination of burning behaviour by oxygen index – Part 2: Ambient-temperature test, Geneva, Switzerland: ISO.
  • Jiao, L., H. Xiao, Q. Wang, and J. Sun. 2013. Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym. Degrad. Stab. 98 (12):2687–96. doi:10.1016/j.polymdegradstab.2013.09.032.
  • Kashiwagi, T. 1994. Polymer combustion and flammability—Role of the condensed phase. Symp. Comb 25 (1):1423–37. doi:10.1016/S0082-0784(06)80786-1.
  • Krämer, R. H., M. Zammarano, G. T. Linteris, U. W. Gedde, and J. W. Gilman. 2010. Heat release and structural collapse of flexible polyurethane foam. Polym. Degrad. Stab. 95 (6):1115–22. doi:10.1016/j.polymdegradstab.2010.02.019.
  • Levchik, S. V. 2006. ‘Introduction to Flame Retardancy and Polymer Flammability’. Flame Retardant Polymer Nanocomposites, ed, 1–29. Hoboken, New Jersey: John Wiley & Sons, Inc.
  • Levchik, S. V., and E. D. Weil. 2004. Thermal decomposition, combustion and fire-retardancy of polyurethanes—A review of the recent literature. Polym. Inter. 53 (11):1585–610. doi:10.1002/(ISSN)1097-0126.
  • Linteris, G. T. 2011. Numerical simulations of polymer pyrolysis rate: Effect of property variations. Fire. Mat 35 (7):463–80. doi:10.1002/fam.v35.7.
  • Linteris, G. T., M. Zammarano, B. Wilthan, and L. Hanssen. 2012. 'aAbsorption and reflection of infrared radiation by polymers in fire‐like environments'. Fire and Materials 36 (7):537–553.
  • Liu, L., Z. Wang, and X. Xu. 2017a. Melamine amino trimethylene phosphate as a novel flame retardant for rigid polyurethane foams with improved flame retardant, mechanical and thermal properties. J. Appl. Polym. Sci 134 (39):45234-n/a. doi:10.1002/app.v134.39.
  • Liu, Y., J. He, and R. Yang. 2017b. The synthesis of melamine-based polyether polyol and its effects on the flame retardancy and physical–Mechanical property of rigid polyurethane foam. J. Mat. Sci 52 (8):4700–12. doi:10.1007/s10853-016-0713-y.
  • Lorenzetti, A., B. Dittrich, B. Schartel, M. Roso, and M. Modesti. 2017. Expandable graphite in polyurethane foams: The effect of expansion volume and intercalants on flame retardancy. J. Appl. Polym. Sci 134:31. doi:10.1002/app.45173.
  • Lorenzetti, A., M. Modesti, E. Gallo, B. Schartel, S. Besco, and M. Roso. 2012. Synthesis of phosphinated polyurethane foams with improved fire behaviour. Polym. Degrad. Stab. 97 (11):2364–69. doi:10.1016/j.polymdegradstab.2012.07.026.
  • Lorenzetti, A., M. Modesti, S. Besco, D. Hrelja, and S. Donadi. 2011. Influence of phosphorus valency on thermal behaviour of flame retarded polyurethane foams. Polym. Degrad. Stab. 96 (8):1455–61. doi:10.1016/j.polymdegradstab.2011.05.012.
  • Lorenzetti, A., S. Besco, D. Hrelja, M. Roso, E. Gallo, B. Schartel, and M. Modesti. 2013. Phosphinates and layered silicates in charring polymers: The flame retardancy action in polyurethane foams. Polym. Degrad. Stab. 98 (11):2366–74. doi:10.1016/j.polymdegradstab.2013.08.002.
  • Lyon, R. E. 2003. Plastics and Rubber. In Handbook of building materials for fire protection, ed. C. A. Harper, 121–171, Vols. 3.1-3.51. New York, United States: McGraw-Hill Education. 0071388915.
  • Madrzykowski, D., and D. W. Stroup. 2008. ‘Flammability Hazard of Materials. In Fire Protection Handbook, 20th ed., 31–48. Quincy, MA, USA: National Fire Protection Association.
  • Modesti, M., and A. Lorenzetti. 2002. Flame retardancy of polyisocyanurate–Polyurethane foams: Use of different charring agents. Polym. Degrad. Stab. 78 (2):341–47. doi:10.1016/S0141-3910(02)00184-2.
  • Modesti, M., A. Lorenzetti, F. Simioni, and G. Camino. 2002. Expandable graphite as an intumescent flame retardant in polyisocyanurate–Polyurethane foams. Polym. Degrad. Stab. 77 (2):195–202. doi:10.1016/S0141-3910(02)00034-4.
  • Modesti, M., A. Lorenzetti, F. Simioni, and M. Gilbert (2001) ‘Influence of expandable graphite on physical-mechanical properties and on fire behaviour of flame retarded PIR-PUR foams’, Polyurethane Expo 2001, Columbus (Ohio), September 30 October 3.
  • Modesti, M., A. Lorenzetti, S. Besco, D. Hrelja, S. Semenzato, R. Bertani, and R. A. Michelin. 2008. Synergism between flame retardant and modified layered silicate on thermal stability and fire behaviour of polyurethane nanocomposite foams. Polym. Degrad. Stab. 93 (12):2166–71. doi:10.1016/j.polymdegradstab.2008.08.005.
  • Modesti, M., F. Simioni, and P. Albertin. 1994. Thermal and thermal-oxidative degradation of polyurethane foams filled with ammonium phosphate. Cel. Polyml 13 (2):113–24.
  • Pawlowski, K. H., and B. Schartel. 2007. Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis(diphenyl phosphate) and bisphenol A bis(diphenyl phosphate) in polycarbonate/acrylonitrile–Butadiene–Styrene blends. Polym. Inter. 56 (11):1404–14. doi:10.1002/(ISSN)1097-0126.
  • Prociak, A., J. Pielichowski, M. Modesti, F. Simioni, and M. Checchin. 2001. Influence of different phosphorus flame retardants on fire behaviour of rigid polyurethane foams blown with pentane. Polimery 46 (10):692–96. doi:10.14314/polimery.
  • Schartel, B., and A. Weiß. 2010. Temperature inside burning polymer specimens: Pyrolysis zone and shielding. Fire. Mat 34 (5):217–35.
  • Schartel, B., C. A. Wilkie, and G. Camino. 2016. Recommendations on the scientific approach to polymer flame retardancy: Part 1—Scientific terms and methods. J. Fire Sci 34 (6):447–67. doi:10.1177/0734904116675881.
  • Schartel, B., M. Bartholmai, and U. Knoll. 2005. Some comments on the use of cone calorimeter data. Polym. Degrad. Stab. 88 (3):540–47. doi:10.1016/j.polymdegradstab.2004.12.016.
  • Schartel, B., and T. R. Hull. 2007. Development of fire-retarded materials—Interpretation of cone calorimeter data. Fire. Mat 31 (5):327–54. doi:10.1002/(ISSN)1099-1018.
  • Schartel, B., U. Beck, H. Bahr, A. Hertwig, U. Knoll, and M. Weise. 2012. Sub‐micrometre coatings as an infrared mirror: A new route to flame retardancy. Fire. Mat 36 (8):671–77. doi:10.1002/fam.v36.8.
  • Schwarzer, M., A. Korwitz, H. Komber, L. Haussler, B. Dittrich, B. Schartel, and D. Pospiech. 2018. Phosphorus-Containing Polymer Flame Retardants for Aliphatic Polyesters. Macromol. Mater. Eng 303 (2):16. doi:10.1002/mame.201700512.
  • Stone, H., M. Pcolinsky, D. B. Parrish, and G. E. Beal. 1991. The effect of foam density on combustion characteristics of flexible polyurethane foam. J. Cel. Plas 27 (1):78–79. doi:10.1177/0021955X91027001101.
  • Szycher, M. 2012. ‘Rigid Polyurethane Foams’. In Szycher’s Handbook of Polyurethanes, 2nd ed., 257–308. Boca Raton, FL, USA: CRC Press.
  • Thirumal, M., D. Khastgir, N. K. Singha, B. S. Manjunath, and Y. P. Naik. 2008. Effect of foam density on the properties of water blown rigid polyurethane foam. J. Appl. Polym. Sci 108 (3):1810–17. doi:10.1002/(ISSN)1097-4628.
  • Vanspeybroeck, R., P. Van Hees, and P. Vandevelde. 1993. Combustion behaviour of polyurethane flexible foams under Cone Calorimetry test conditions. Fire. Mat 17 (4):155–66. doi:10.1002/(ISSN)1099-1018.
  • Velencoso, M. M., A. Battig, J. C. Markwart, B. Schartel, and F. R. Wurm. 2018. Molecular firefighting—how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angewandte Chemie Inter. Ed 57 (33):10450–67. doi:10.1002/anie.201711735.
  • Wu, G. M., B. Schartel, H. Bahr, M. Kleemeier, D. Yu, and A. Hartwig. 2012. Experimental and quantitative assessment of flame retardancy by the shielding effect in layered silicate epoxy nanocomposites. Comb. Flame 159 (12):3616–23. doi:10.1016/j.combustflame.2012.07.003.
  • Xiao‐Yu, C., H. Zong‐Hou, X. Xiu‐Qi, L. Jia, F. Xin‐Yu, and W. Zhan. 2018. Synergistic effect of carbon and phosphorus flame retardants in rigid polyurethane foams. Fire. Mat 42 (4):447–53. doi:10.1002/fam.2511.
  • Xu, W., and G. J. Wang. 2016. Influence of thermal behavior of phosphorus compounds on their flame retardant effect in PU rigid foam. Fire. Mat 40 (6):826–35. doi:10.1002/fam.v40.6.
  • Yang, H., X. Wang, L. Song, B. Yu, Y. Yuan, Y. Hu, and R. K. K. Yuen. 2014. Aluminum hypophosphite in combination with expandable graphite as a novel flame retardant system for rigid polyurethane foams. Polym. Adv. Technol 25 (9):1034–43. doi:10.1002/pat.3348.
  • Zammarano, M., R. H. Kramer, R. Harris, T. J. Ohlemiller, J. R. Shields, S. S. Rahatekar, S. Lacerda, and J. W. Gilman. 2008. Flammability reduction of flexible polyurethane foams via carbon nanofiber network formation. Polym. Adv. Technol 19 (6):588–95. doi:10.1002/pat.1111.
  • Zhao, Q., C. Chen, R. Fan, Y. Yuan, Y. Xing, and X. Ma. 2017. Halogen-free flame-retardant rigid polyurethane foam with a nitrogen–Phosphorus flame retardant. J. Fire Sci 35 (2):99–117. doi:10.1177/0734904116684363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.