308
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical study on smoke evolution in polyethylene (PE) slabs enclosed compartment fire

, , , , &
Pages 2238-2258 | Received 17 Apr 2019, Accepted 17 Jun 2019, Published online: 14 Jul 2019

References

  • Arnaud, T., and Y. Wang. 2010. Large eddy simulation of compartment fires. Int. J. Comput. Fluid. D. 24:449–66. doi:10.1080/10618562.2010.541393.
  • Babrauskas, V. 1977. Combustion of mattresses exposed to flaming ignition sources, Part I, Full-scale tests and hazard analysis. Natl Bur Stand (U.S.), NBSIR 77-1290.
  • Babrauskas, V. 1983. Estimating large pool fire burning rates. Fire Technol. 19:251–61. doi:10.1007/BF02380810.
  • Babrauskas, V., R. D. Peacock, and P. A. Reneke. 2003. Defining flashover for fire hazard calculations Part II. Fire Safety J. 38:613–22. doi:10.1016/s0379-7112(03)00027-4.
  • Cai, N., and W. Chow. 2014. Numerical studies on heat release rate in a room fire burning wood and liquid fuel. J. Build. Simul. 7:511–24. doi:10.1007/s12273-014-0177-4.
  • Chen, X. 2008. Simulation of temperature and smoke distribution of a tunnel fire based on modifications of multi-layer zone model. Tunnelling Underground Space Technol. 23:75–79. doi:10.1016/j.tust.2006.10.005.
  • Cheng, C. C. K., K. M. Lam, and F. N. Demirbilek. 2008. Effects of building wall arrangements on wind-induced ventilation through the refuge floor of a tall building. J. Wind Eng. Ind. Aerod. 96:656–64. doi:10.1016/j.jweia.2008.01.009.
  • Chung, K. C., H. S. Tung, and Y. L. Wu. 2005. Applied zone model to evaluate the smoke management in an underground structure. J. Fire. Sci. 23:99–117. doi:10.1177/0734904105044267.
  • Cox, G., and S. Kumar. 2002. Modelling enclosure fires using CFD. In SFPE handbook of fire protection engineering, 3rd ed., 194–218. Quincy, MA, USA: National Fire Protection Association.
  • Crewe, R. J., A. A. Stec, and R. G. Walker. 2014. Experimental results of a residential house fire test on tenability: Temperature, smoke, and gas analyses. J. Forensic Sci. 59:139–54. doi:10.1111/1556-4029.12268.
  • Crewe, R. J., J. P. Hidalgo, and M. X. SRensen. 2018. Fire performance of sandwich panels in a modified ISO 13784-1 small room test: the influence of increased fire load for different insulation materials. Fire Technol. 54:819–52. doi:10.1007/s10694-018-0703-5.
  • Foote, K. L., P. J. Pagni, and N. J. Alvares. 1986. Temperature correlations for forced-ventilated compartment fires. Fire Saf. Sci. 1:139–48. doi:10.3801/IAFSS.FSS.1-139.
  • Hagglund, B., R. Jannson, and B. Onnermark. 1974. Fire development in residential rooms after ignition from nuclear explosions, FOA C20016-DG (A3), Forsvarets Forskningsanstalt, Stockholm.
  • Hu, L., R. Huo, Y. Li, H. Wang, and W. Chow. 2005. Full-scale burning tests on studying smoke temperature and velocity along a corridor. Tunnelling Underground Space Technol. 20:223–29. doi:10.1016/j.tust.2004.08.007.
  • Hua, J., J. Wang, and K. Kurichi. 2005. Development of a hybrid field and zone model for fire smoke propagation simulation in buildings. Fire Safety J. 40:99–119. doi:10.1016/j.firesaf.2004.09.005.
  • Kawagoe, K. 1958. Fire behavior in rooms. Building Research Institute, 27. Japan, Tokyo: Ministry of Construction.
  • Lai, C. M., C. J. Chen, and M. J. Tsai. 2013. Determinations of the fire smoke layer height in a naturally ventilated room. Fire Safety J. 58:1–14. doi:10.1016/j.firesaf.2013.01.015.
  • Leite, R. M., and F. R. Centeno. 2017. Effect of tank diameter on thermal behavior of gasoline and diesel storage tanks fires. J. Hazard. Mater. 342:544–52. doi:10.1016/j.jhazmat.2017.08.052.
  • Leonard, Y. C. 1998. Simulating smoke movement through long vertical shafts in zone-type compartment fire models. Fire Safety J. 31:85–99. doi:10.1016/S0379-7112(98)00070-8.
  • Li, S. C., D. F. Huang, N. Meng, L. F. Chen, and L. H. Hu. 2017. Smoke spread velocity along a corridor induced by an adjacent compartment fire with outdoor wind. Appl. Therm. Eng. 111:420–30. doi:10.1016/j.applthermaleng.2016.09.086.
  • Loo, S. X., A. Coppalle, and J. Yon. 2016. Time-dependent smoke yield and mass loss of pool fires in a reduced-scale mechanically ventilated compartment. Fire Safety J. 81:32–43. doi:10.1016/j.firesaf.2016.01.006.
  • Mannan, S., and F. P. Lees. 2005. Lees’ loss prevention in the process industries: Hazard identification, assessment and control, Vol. 3. Elsevier. doi:10.1016/S0304-3894(02)00033-X.
  • Mark, J. E. 2007. Physical properties of polymers handbook. New York, USA: Springer. doi:10.1524/zpch.1997.199.Part_1.128.
  • McCaffrey, B. J., J. G. Quintiere, and M. F. Harkleroad. 1982. Estimating room temperatures and the likelihood of flashover using fire test data correlations. Fire Technol. 18:122–122. doi:10.1007/BF02479583.
  • McGrattan, K. 2004. Fire dynamics simulator (version 4) technical reference guide. NIST Special Publication 1018.
  • McGrattan, K., and G. Forney. 2005. Fire dynamics simulator (version 4) user’s guide. NIST special publication 1019.
  • Moss, J. B., C. D. Stewart, and K. J. Young. 1995. Modelling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions. Combust. Flame 101:491–500. doi:10.1016/0010-2180(94)00233-I.
  • Mowrer, F. W., and R. B. Williamson. 1987. Estimating room temperatures from fires along walls and in corners. Fire Technol. 23:133–45. doi:10.1007/bf01040428.
  • Nishino and Tomoaki. 2017. Two-layer zone model including entrainment into the horizontally spreading smoke under the ceiling for application to fires in large area rooms. Fire Safety J. 91:355–60. doi:10.1016/j.firesaf.2017.03.049.
  • Peacock, R. D., P. A. Reneke, R. W. Bukowski, and V. Babrauskas. 1999. Defining flashover for fire hazard calculations. Fire Safety J. 32:331–45. doi:10.1016/S0379-7112(03)00027-4.
  • Pierce, J. B. M., and J. B. Moss. 2007. Smoke production, radiation heat transfer and fire growth in a liquid-fueled compartment fire. Fire Safety J. 42:310–20. doi:10.1016/j.firesaf.2006.11.006.
  • Rafinazari, A., and G. Hadjisophocleous. 2018. A study of the effect of make-up air velocity on the smoke layer height with symmetric openings in atrium fires. Fire Technol. 54:229–53. doi:10.1007/s10694-017-0682-y.
  • Suzuki, K., Tanaka, and Takeyoshi. 2004. An application of a multilayer zone model to a tunnel fire. In: Proceedings of the Sixth Asia Oceania Symposium on Fire Science and Technology. Daegu, Korea, 17–20.
  • Tanaka, T., and T. Yamana. 2009. Smoke control in large scale spaces. Fire Sci. Technol. 5:41–54. doi:10.3210/fst.5.41.
  • Thomas, P. H., P. L. Hinkley, C. R. Theobald, and D. L. Simms 1963. Investigations into the flow of hot gases in roof venting. Fire Research Technical Paper No.7, Fire Research Station, Watford, UK.
  • Walton, W. D., and P. H. Thomas 2016. Estimating temperatures in compartment fires. SFPE handbook of fire protection engineering, Vol. 2, Chap. 6. pp. 134–47. doi:10.1007/978-1-4939-2565-0_30.
  • Woolley, W., M. Raftery, and S. Ames. 1980. Smoke release from wall linings in full-scale compartment fires. Fire Safety J. 2:61–72. doi:10.1016/0379-7112(79)90015-8.
  • Yuen, A. C. Y., G. H. Yeoh, and R. Alexander. 2014. Fire scene reconstruction of a furnished compartment room in a house fire. Case Studies in Fire Saf. 1:29–35. doi:10.1016/j.csfs.2014.01.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.