578
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Using Background-Oriented Schlieren to Visualize Convection in a Propagating Wildland Fire

ORCID Icon, , , , ORCID Icon &
Pages 2259-2279 | Received 22 Mar 2019, Accepted 19 Jun 2019, Published online: 08 Jul 2019

References

  • Albers, B. W., and A. K. Agrawal. 1999. Schlieren analysis of an oscillating gas-jet diffusion flame. Combust Flame 119 (1–2):84–94. Elsevier. doi:10.1016/S0010-2180(99)00034-6.
  • Albini, F. A. 1986. Wildland fire spread by radiation – a model including fuel cooling by natural convection. Combust Sci Technol 45 (1–2):101–13. Taylor & Francis Group. doi:10.1080/00102208608923844.
  • Aminfar, A., N. Davoodzadeh, G. Aguilar, and M. Princevac. 2019. Application of optical flow algorithms to laser speckle imaging. Microvasc. Res. November Academic Press. doi:10.1016/J.MVR.2018.11.001.
  • Anandan, P. (1989). A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision 2 (3): 283–310.
  • Anderson, W. R., E. A. Catchpole, and B. W. Butler. 2010. Convective heat transfer in fire spread through fine fuel beds. Int J Wildland Fire 19 (3):284. CSIRO PUBLISHING. doi:10.1071/WF09021.
  • Atcheson, B., W. Heidrich, and I. Ihrke. 2009. An evaluation of optical flow algorithms for background oriented schlieren imaging. Exp Fluids 46 (3):467–76. doi:10.1007/s00348-008-0572-7.
  • Bauknecht, A., C. B. Merz, M. Raffel, A. Landolt, and A. H. Meier. 2014. Blade-tip vortex detection in maneuvering flight using the background-oriented schlieren technique. J Aircr 51(6): American Institute of Aeronautics and Astronautics: 2005–2014. doi:10.2514/1.C032672.
  • Brequigny, P., C. Endouard, C. Mounaïm-Rousselle, and F. Foucher. 2018. An experimental study on turbulent premixed expanding flames using simultaneously schlieren and tomography techniques. Exp Therm Fluid Sci 95 (July):11–17. Elsevier. doi:10.1016/J.EXPTHERMFLUSCI.2017.12.018.
  • Brox, T., A. Bruhn, N. Papenberg, and J. Weickert. 2004. High accuracy optical flow estimation based on a theory for warping. Lecture notes in computer science, Vol. 3024, 25–36. Springer, Berlin
  • Bühlmann, P., A. H. Meier, M. Ehrensperger, and R. Thomas 2014. “Laser speckle based background oriented schlieren measurements in a fire backlayering front.” In 17th International Symposium on Applications of Laser Techniques to Fluid Mechanic. Lisbon. http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2014/finalworks2014/papers/02.11_4_173paper.pdf.
  • Butler, B. W., J. Cohen, D. J. Latham, R. D. Schuette, P. Sopko, K. S. Shannon, D. Jimenez, and L. S. Bradshaw. 2004. Measurements of radiant emissive power and temperatures in crown fires. Can J For Res 34 (8):1577–87. doi:10.1139/x04-060.
  • Choi, J.-H., W.-J. Lee, S.-K. Park, J. Kim, and B. C. Choi. 2019. Experimental study on the flame propagation behaviors of R245fa(C3H3F5)/CH4/O2/N2 mixtures in a constant volume combustion chamber. Exp Therm Fluid Sci 101 (January):276–82. Elsevier. doi:10.1016/J.EXPTHERMFLUSCI.2018.10.030.
  • Clark, T. L., L. Radke, J. Coen, T. L. Don Middleton, L. R. Clark, J. Coen, and D. Middleton. 1999. Analysis of small-scale convective dynamics in a crown fire using infrared video camera imagery. J Appl Meteorol 38 (10):1401–20. doi:10.1175/1520-0450(1999)038<1401:AOSSCD>2.0.CO;2.
  • Cobian-Iñiguez, J., A. Aminfar, J. Chong, G. Burke, A. Zuniga, D. R. Weise, and M. Princevac. 2017. Wind tunnel experiments to study chaparral crown fires. J Visualized Exp 129 (November):e56591–e56591. doi:10.3791/56591.
  • Cohen, J. D. (2015). Fuel particle heat exchange during wildland fire spread. Ph.D.Dissertation. University of Idaho. Idaho, USA.
  • Dalziel, S. B., G. O. Hughes, and B. R. Sutherland. 2000. Whole-field density measurements by ‘Synthetic Schlieren.’. Exp Fluids 28 (4):322–35. Springer-Verlag. doi:10.1007/s003480050391.
  • de Ris, J. L. 2013. Mechanism of buoyant turbulent diffusion flames. Procedia Eng 62 (January):13–27. Elsevier. doi:10.1016/J.PROENG.2013.08.040.
  • Farnebäck, G., (2003, June). Two-frame motion estimation based on polynomial expansion. In Scandinavian conference on Image analysis 363–370. Berlin, Heidelberg: Springer.
  • Finney, Mark A, Jack D Cohen, Jason M Forthofer, Sara S Mcallister, Michael J Gollner, Daniel J Gorham, Kozo Saito, et al. 2015. Role of buoyant flame dynamics in wildfire spread. Proc Natl Acad Sci 112 (32):9833–38. doi:10.1073/pnas.1504498112.
  • Fons, W. L. 1946. Analysis of fire spread in light fuels. J Agric Res 72:93–121.
  • Förster, F. J., N. C. Dröske, M. N. Bühler, J. von Wolfersdorf, and B. Weigand. 2016. Analysis of flame characteristics in a scramjet combustor with staged fuel injection using common path focusing schlieren and flame visualization. Combust Flame 168 (June):204–15. Elsevier. doi:10.1016/J.COMBUSTFLAME.2016.03.010.
  • Frankman, D., B. W. Webb, and B. W. Butler. 2010. Time-resolved radiation and convection heat transfer in combusting discontinuous fuel beds. Combust Sci Technol 182 (10):1391–412. Taylor & Francis Group. doi:10.1080/00102202.2010.486388.
  • Frankman, D., B. W. Webb, B. W. Butler, D. Jimenez, J. M. Forthofer, P. Sopko, K. S. Shannon, J. Kevin Hiers, and R. D. Ottmar. 2013. Measurements of convective and radiative heating in wildland fires. Int J Wildland Fire 22 (2):157–67. doi:10.1071/WF11097.
  • Gladstone, John Hall, and Thomas P. Dale. “XIV. Researches on the refraction, dispersion, and sensitiveness of liquids.” Philosophical Transactions of the Royal Society of London 153 (1863): 317–343
  • Grauer, S. J., A. Unterberger, A. Rittler, K. J. Daun, A. M. Kempf, and K. Mohri. 2018. Instantaneous 3D flame imaging by background-oriented schlieren tomography. Combust Flame 196 (October):284–99. doi:10.1016/j.combustflame.2018.06.022.
  • Gustenyov, N., N. K. Akafuah, A. Salaimeh, M. Finney, S. McAllister, and K. Saito. 2018. Scaling nonreactive cross flow over a heated plate to simulate forest fires. Combust Flame 197 (November):340–54. Elsevier. doi:10.1016/J.COMBUSTFLAME.2018.08.014.
  • Hargather, M. J., and G. S. Settles. 2011. Background-oriented schlieren visualization of heating and ventilation flows: HVAC-BOS. HVAC and R Res 17 (5):771–80. doi:10.1080/10789669.2011.588985.
  • Harker, M. R., T. Hattrell, M. Lawes, C. G. W. Sheppard, N. Tripathi, and R. Woolley. 2012. Measurements of the three-dimensional structure of flames at low turbulence. Combust Sci Technol 184 (10–11):1818–37. Taylor & Francis Group. doi:10.1080/00102202.2012.691775.
  • Heineck, J. T., D. Banks, E. T. Schairer, E. A. Haering, and P. Bean. 2016. “Background Oriented Schlieren (BOS) of a supersonic aircraft in flight.” In AIAA Flight Testing Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics. doi:10.2514/6.2016-3356.
  • Ho, C. M., K. Jakus, and K. H. Parker. 1976. Temperature Fluctuations in a Turbulent Flame. Combust Flame 27 (August):113–23. Elsevier. doi:10.1016/0010-2180(76)90011-0.
  • Horn, B. K. P., and B. G. Schunck. 1980. Determining optical flow. Artif Intell 17 (1–3):185–203. doi:10.1016/0004-3702(81)90024-2.
  • Leopold, F. 2007. “The application of the colored background oriented schlieren technique (CBOS) to free-flight and in-flight measurements.” In 2007 22nd International Congress on Instrumentation in Aerospace Simulation Facilities, 1–10. IEEE, Pacific Grove, CA, USA. doi:10.1109/ICIASF.2007.4380894.
  • Lozano, J. 2011. “An investigation of surface and crown fire dynamics in shrub fuels.” Dissertation, University of California-Riverside. University of California, Riverside.
  • Lozano, J., D. R. Watcharapong Tachajapong, S. M. Weise, and M. Princevac. 2010. Fluid dynamic structures in a fire environment observed in laboratory-scale experiments. Combust Sci Technol 182 (7):858–78. Taylor & Francis Group. doi:10.1080/00102200903401241.
  • Lucas, B. D., and T. Kanade. 1981. “An Iterative Image Registration Technique with an Application to Stereo Vision,” 674–79.
  • Mattsson, R., M. Kupiainen, P. Gren, A. Wåhlin, T. E. Carlsson, and C. Fureby. 2004. Pulsed TV holography and schlieren studies, and large eddy simulations of a turbulent jet diffusion flame. Combust Flame 139 (1–2):1–15. Elsevier. doi:10.1016/J.COMBUSTFLAME.2004.06.005.
  • Maynard, T., and M. Princevac. 2012. The application of a simple free convection model to the pool fire pulsation problem. Combust Sci Technol 184 (4):505–16. Taylor & Francis Group. doi:10.1080/00102202.2011.648034.
  • Maynard, T., M. Princevac, and D. R. Weise. 2016. A study of the flow field surrounding interacting line fires. J Combust 2016 (December):1–12. Hindawi. doi:10.1155/2016/6927482.
  • Meier, G. 2002. Computerized background-oriented schlieren. Exp Fluids 33 (1):181–87. Springer-Verlag. doi:10.1007/s00348-002-0450-7.
  • Meier, G. E. A. 1999. “Hintergrund-Schlierenverfahren,” German Patent Office, No. 19942856.5, 1999.
  • Morandini, F., and X. Silvani. 2010. Experimental investigation of the physical mechanisms governing the spread of wildfires. Int J Wildland Fire 19 (5):570. CSIRO PUBLISHING. doi:10.1071/WF08113.
  • Morandini, F., X. Silvani, and A. Susset. 2012. Feasibility of particle image velocimetry in vegetative fire spread experiments. Exp Fluids 53 (1):237–44. doi:10.1007/s00348-012-1285-5.
  • Mungal, M. G., L. M. Lourenco, and A. Krothpalli. 1995. Instantaneous velocity measurements in laminar and turbulent premixed flames using on-line PIV. Combust Sci Technol 106 (4–6):239–65. Taylor & Francis Group. doi:10.1080/00102209508907781.
  • Nelson, R.M., 1993. Byram derivation of the energy criterion for forest and wildland fires. International Journal of Wildland Fire 3 (3): 131–138.
  • Norris, N. 1940. The standard errors of the geometric and harmonic means and their application to index numbers. Annals Math Stat 11 (4):445–48. Institute of Mathematical Statistics. doi:10.1214/aoms/1177731830.
  • Ota, M., K. Hamada, H. Kato, and K. Maeno. 2011. Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren (CGBOS) Technique. Meas Sci Technol 22 (10):104011. IOP Publishing. doi:10.1088/0957-0233/22/10/104011.
  • Raffel, M. 2015. Background-oriented schlieren (BOS) Techniques. Exp Fluids 56. doi:10.1007/s00348-015-1927-5.
  • Schwar, M. J. R., and F. J. Weinberg. 1969. Laser techniques in combustion research. Combust Flame 13 (4):335–74. Elsevier. doi:10.1016/0010-2180(69)90106-0.
  • Settles, G. S. 2001. Basic Concepts. Schlieren Shadowgraph Tech Berlin, Heidelberg: Springer Berlin Heidelberg:25–38. doi:10.1007/978-3-642-56640-0_2.
  • Settles, G. S., and M. Hargather. 2017. A review of recent developments in schlieren and shadowgraph techniques this. Meas Sci Technol 28: IOP Publishing: 042001. doi:10.1088/1361-6501/aa5748.
  • Silvani, X., F. Morandini, and J.-L. Dupuy. 2012. Effects of slope on fire spread observed through video images and multiple-point thermal measurements. Exp Therm Fluid Sci 41 (September):99–111. Elsevier. doi:10.1016/J.EXPTHERMFLUSCI.2012.03.021.
  • Taylor, Z. J., R. Gurka, G. A. Kopp, and A. Liberzon. 2010. Long-duration time-resolved PIV to study unsteady aerodynamics. IEEE Trans Instrum Meas 59 (12):3262–69. doi:10.1109/TIM.2010.2047149.
  • Toepler, A. 1864. “Beobachtungen Nach Einer Neuen Optischen Methode,Cohen, Bonn.”
  • Venkatakrishnan, L., and G. E. A. Meier. 2004. Density measurements using the background oriented schlieren technique. Exp Fluids 37:2. doi:10.1007/s00348-004-0807-1.
  • Weise, D. R., T. H. Fletcher, W. Cole, S. Mahalingam, X. Zhou, L. Sun, and L. Jing. 2018a. Fire behavior in chaparral–evaluating flame models with laboratory data. Combust Flame 191 (May):500–12. Elsevier. doi:10.1016/J.COMBUSTFLAME.2018.02.012.
  • Weise, David R., Thomas H., Timothy J. Johnson, WeiMin Hao, Mark Dietenberger, Marko Princevac, Bret Butler, et al. 2018b. A project to measure and model pyrolysis to improve prediction of prescribed fire behavior. Adv For Fire Res 2018:308–18. Imprensa da Universidade de Coimbra. doi:10.14195/978-989-26-16-506_33.
  • Wernekinck, U., and W. Merzkirch. 1987. Speckle photography of spatially extended refractive-index fields. Appl Opt 26 (1):31. Optical Society of America. doi:10.1364/AO.26.000031.
  • Wetzstein, G., R. Raskar, and W. Heidrich. 2011. “Hand-held schlieren photography with light field probes.” In 2011 IEEE International Conference on Computational Photography (ICCP), 1–8. IEEE, Pittsburgh, PA, USA. doi:10.1109/ICCPHOT.2011.5753123.
  • Wey, F. J. 1954. Analysis of optical methods. In Physical Measurements in Gas and Dynamics and Combustion. 3–25. Princeton University Press, Princeton.
  • Wu, Y., H. J. Xing, and G. Atkinson. 2000. Interaction of fire plume with inclined surface. Fire Saf J 35 (4):391–403. Elsevier. doi:10.1016/S0379-7112(00)00032-1.
  • Xue T., Rubinstein M., Wadhwa N., Levin A., Durand F., Freeman W.T. (2014) Refraction Wiggles for Measuring Fluid Depth and Velocity from Video. In: Fleet D., Pajdla T., Schiele B., Tuytelaars T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8691. Springer, Cham.
  • Zach, C., T. Pock, and H. Bischof. 2007. “A duality based approach for realtime TV-L 1 optical flow.” In Pattern Recognition, 214–23. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-540-74936-3_22. 91
  • Zhou, X., L. Sun, S. Mahalingam, and D. R. Weise. 2003. Thermal particle image velocity estimation of fire plume flow. Combust Sci Technol 175 (7):1293–316. Taylor & Francis Group. doi:10.1080/00102200302376.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.