277
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Premixed Flame Response to a Counterflowing Non-thermal Plasma Jet

, , ORCID Icon, &
Pages 2280-2296 | Received 26 May 2019, Accepted 03 Jul 2019, Published online: 10 Jul 2019

References

  • Adamovich, I. V., and W. R. Lempert. 2015. Challenges in understanding and predictive model development of plasma-assisted combustion. Plasma Phys. Contr. F. 57:0140011.
  • Benard, N., and E. Moreau. 2010. Capabilities of the dielectric barrier discharge plasma actuator for multi-frequency excitations. J. Phys. D: Appl. Phys. 43:14520114.
  • Brandenburg, R. 2017. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 26:0530015.
  • Coriton, B., J. H. Frank, and A. Gomez. 2013. Effects of strain rate, turbulence, reactant stoichiometry and heat losses on the interaction of turbulent premixed flames with stoichiometric counterflowing combustion products. Combust. Flame 160 (11):2442–56. doi:10.1016/j.combustflame.2013.05.009.
  • Coriton, B., J. H. Frank, A. G. Hsu, M. D. Smooke, and A. Gomez. 2011. Effect of quenching of the oxidation layer in highly turbulent counterflow premixed flames. P. Combust. Inst. 33 (1):1647–54. doi:10.1016/j.proci.2010.05.028.
  • Cui, W., Y. Ren, and S. Li. 2019. Stabilization of premixed swirl flames under flow pulsations using microsecond pulsed plasmas. J. Propul. Power. 35:190–200. doi:10.2514/1.B37219
  • De Giorgi, M. G., A. Ficarella, A. Sciolti, E. Pescini, S. Campilongo, and G. Di Lecce. 2017. Improvement of lean flame stability of inverse methane/air diffusion flame by using coaxial dielectric plasma discharge actuators. Energy 126:689–706. doi:10.1016/j.energy.2017.03.048.
  • Horiuti, K. 1985. Large eddy simulation of turbulent channel flow by one-equation modeling. J. Phys. Soc. 54 (8):2855–65. doi:10.1143/JPSJ.54.2855.
  • Humphrey, L. J., B. Emerson, and T. C. Lieuwen. 2018. Premixed turbulent flame speed in an oscillating disturbance field. J. Fluid Mech. 835:102–30. doi:10.1017/jfm.2017.728.
  • Ju, Y., and W. Sun. 2015. Plasma assisted combustion: Dynamics and chemistry. Prog. Energ. Combust. 48:21–83. doi:10.1016/j.pecs.2014.12.002.
  • Kazakov, A., and M. Frenklach. 1994. DRM19. Accessed. http://combustion.berkeley.edu/drm/ http://www.me.berkeley.edu/drm/.
  • Kim, J., F. Akamatsu, G. Choi, and D. Kim. 2009. Observation of local heat release rate with changing combustor pressure in the CH4/air flame (wrinkled laminar regime). Thermo. Acta 491 (1–2):109–15. doi:10.1016/j.tca.2009.03.012.
  • Kitajima, A., T. Ueda, A. Matsuo, and M. Mizomoto. 2000. A comprehensive examination of the structure and extinction of turbulent nonpremixed flames formed in a counterflow. Combust. Flame 121 (1–2):301–11. doi:10.1016/S0010-2180(99)00139-X.
  • Kogelschatz, U. 2003. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chem. Plasma P. 23 (1):1–46. doi:10.1023/A:1022470901385.
  • Kornev, N., and E. Hassel. 2007. Method of random spots for generation of synthetic inhomogeneous turbulent fields with prescribed autocorrelation functions. Commun. Numer. Meth. En. 23 (1):35–43. doi:10.1002/cnm.880.
  • Lacoste, D. A., Y. Xiong, J. P. Moeck, S. H. Chung, W. L. Roberts, and M. S. Cha. 2017. Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges. P. Combust. Inst. 36 (3):4183–92. doi:10.1016/j.proci.2016.05.034.
  • Law, C. K. 2006. Combustion physics. New York: Cambridge University Press.
  • Law, C. K., and C. J. Sung. 2000. Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energ. Combust. 26:459–505. doi:10.1016/S0360-1285(00)00018-6.
  • Li, T., I. V. Adamovich, and J. A. Sutton. 2013. A burner platform for examining the effects of non-equilibrium plasmas on oxidation and combustion chemistry. Combust. Sci. Tech. 185 (6):990–98. doi:10.1080/00102202.2013.769438.
  • Lieuwen, T. 2003. Modeling premixed combustion-acoustic wave interactions: A review. J. Propul. Power 19 (5):765–81. doi:10.2514/2.6193.
  • Massa, L., and J. B. Freund. 2017. Plasma-combustion coupling in a dielectric-barrier discharge actuated fuel jet. Combust. Flame 184:208–32. doi:10.1016/j.combustflame.2017.06.008.
  • Nagaraja, S., V. Yang, Z. Yin, and I. Adamovich. 2014. Ignition of hydrogen–Air mixtures using pulsed nanosecond dielectric barrier plasma discharges in plane-to-plane geometry. Combust. Flame 161 (4):1026–37. doi:10.1016/j.combustflame.2013.10.007.
  • Ono, T., T. Segawa, N. Saito, E. Takahashi, and M. Nishioka. 2017. Effect of long-lived species generated by non-thermal plasmas on the auto-ignition delay of liquid hydrocarbon fuel-air pre-mixtures. Combust. Sci. Tech. 189 (9):1624–38. doi:10.1080/00102202.2017.1318856.
  • Park, D. G., S. H. Chung, and M. S. Cha. 2016. Bidirectional ionic wind in nonpremixed counterflow flames with DC electric fields. Combust. Flame 168:138–46. doi:10.1016/j.combustflame.2016.03.025.
  • Park, D. G., S. H. Chung, and M. S. Cha. 2018. Dynamic responses of counterflow nonpremixed flames to AC electric field. Combust. Flame 198:240–48. doi:10.1016/j.combustflame.2018.09.016.
  • Poinsot, T. 2017. Prediction and control of combustion instabilities in real engines. P. Combust. Inst. 36 (1):1–28. doi:10.1016/j.proci.2016.05.007.
  • Schuller, T., D. Durox, and S. Candel. 2002. Dynamics of and noise radiated by a perturbed impinging premixed jet flame. Combust. Flame 128 (1–2):88–110. doi:10.1016/S0010-2180(01)00334-0.
  • Simeni Simeni, M., Y. Tang, Y. Hung, Z. Eckert, K. Frederickson, and I. V. Adamovich. 2018. Electric field in Ns pulse and AC electric discharges in a hydrogen diffusion flame. Combust. Flame 197:254–64. doi:10.1016/j.combustflame.2018.08.004.
  • Starikovskiy, A., and N. Aleksandrov. 2013. Plasma-assisted ignition and combustion. Prog. Energ. Combust. 39 (1):61–110. doi:10.1016/j.pecs.2012.05.003.
  • Sun, W., S. H. Won, T. Ombrello, C. Carter, and Y. Ju. 2013. Direct ignition and S-curve transition by in situ nano-second pulsed discharge in methane/oxygen/helium counterflow flame. P. Combust. Inst. 34 (1):847–55. doi:10.1016/j.proci.2012.06.104.
  • Sun, W., S. H. Won, and Y. Ju. 2014. In situ plasma activated low temperature chemistry and the S-curve transition in DME/oxygen/helium mixture. Combust. Flame 161 (8):2054–63. doi:10.1016/j.combustflame.2014.01.028.
  • Sung, C. J., and C. K. Law. 2000. Structural sensitivity, response, and extinction of diffusion and premixed flames in oscillating counterflow. Combust. Flame 123 (3):375–88. doi:10.1016/S0010-2180(00)00175-9.
  • Tang, J., W. Zhao, and Y. Duan. 2010. In-depth study on propane–air combustion enhancement with dielectric barrier discharge. IEEE Trans. Plasma Sci. 38 (12):3272–81. doi:10.1109/TPS.2010.2084597.
  • Tang, Y., J. Zhuo, W. Cui, S. Li, and Q. Yao. 2019a. Non-premixed flame dynamics excited by flow fluctuations generated from dielectric-barrier-discharge plasma. Combust. Flame 204:58–67. doi:10.1016/j.combustflame.2019.03.003.
  • Tang, Y., M. Simeni Simeni, K. Frederickson, Q. Yao, and I. V. Adamovich. 2019b. Counterflow diffusion flame oscillations induced by ns pulse electric discharge waveforms. Combust. Flame 206:239–48. doi:10.1016/j.combustflame.2019.05.002.
  • Tang, Y., Q. Yao, W. Cui, Y. Pu, and S. Li. 2018. Flow fluctuation induced by coaxial plasma device at atmospheric pressure. Appl. Phys. Lett. 113 (22):224101. doi:10.1063/1.5063486.
  • Tirunagari, R. R., M. W. Pettit, A. M. Kempf, and S. B. Pope. 2017. A simple approach for specifying velocity inflow boundary conditions in simulations of turbulent opposed-jet flows. Flow, Turbul. Combust. 98 (1):131–53. doi:10.1007/s10494-016-9743-4.
  • Vincent-Randonnier, A., S. Larigaldie, P. Magre, and V. Sabel’Nikov. 2007. Plasma assisted combustion: Effect of a coaxial DBD on a methane diffusion flame. Plasma Sources Sci. Technol. 16 (1SI):149–60. doi:10.1088/0963-0252/16/1/020.
  • Yang, S., S. Nagaraja, W. Sun, and V. Yang. 2017. Multiscale modeling and general theory of non-equilibrium plasma-assisted ignition and combustion. J. Phys. D: Appl. Phys. 50 (43):433001. doi:10.1088/1361-6463/aa87ee.
  • Yoshizawa, A., and K. Horiuti. 1985. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. 54 (8):2834–39. doi:10.1143/JPSJ.54.2834.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.