215
Views
5
CrossRef citations to date
0
Altmetric
Articles

Fluidized bed CaO hydration-dehydration cycles for application to sorption-enhanced methanation

, , &
Pages 1724-1733 | Received 03 Jul 2019, Accepted 03 Jul 2019, Published online: 30 Jul 2019

References

  • Bartholomew, C. H. 2001. Mechanisms of catalyst deactivation. Appl. Catal. A 212:17–60. doi:10.1016/S0926-860X(00)00843-7.
  • Boll, W., G. Hochgesand, and W.-D. Müller. 2006. Methanation and methane synthesis. In Ullmann’s encyclopedia of industrial chemistry, 85. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
  • Borgschulte, A., N. Gallandat, B. Probst, R. Suter, E. Callini, D. Ferri, Y. Arroyo, R. Erni, H. Geerlings, and A. Züttel. 2013. Sorption enhanced CO2 methanation. Phys. Chem. Chem. Phys. 15:9620–25. doi:10.1039/c3cp51408k.
  • Coppola, A., L. Palladino, F. Montagnaro, F. Scala, and P. Salatino. 2015. Reactivation by steam hydration of sorbents for fluidized-bed calcium looping. Energy Fuels 29 (7):4436–46. doi:10.1021/acs.energyfuels.5b00413.
  • Coppola, A., P. Salatino, F. Montagnaro, and F. Scala. 2014. Hydration-induced reactivation of spent sorbents for fluidized bed calcium looping (double looping). Fuel Process. Technol. 120:71–78. doi:10.1016/j.fuproc.2013.12.004.
  • Coppola, A., F. Scala, L. Gargiulo, and P. Salatino. 2017. A twin-bed test reactor for characterization of calcium looping sorbents. Powder Technol. 316:585–91. doi:10.1016/j.powtec.2016.11.067.
  • Cuéllar-Franca, R. M., and A. Azapagic. 2015. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 9:82–102. doi:10.1016/j.jcou.2014.12.001.
  • de Boer, H. S., L. Grond, H. Moll, and R. Benders. 2014. The application of power-to-gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels. Energy 72:360–70. doi:10.1016/j.energy.2014.05.047.
  • Dou, B., H. Zhang, G. Cui, Z. Wang, B. Jiang, K. Wang, H. Chen, and Y. Xu. 2017. Hydrogen production and reduction of Ni-based oxygen carriers during chemical looping steam reforming of ethanol in a fixed-bed reactor. Int. J. Hydrogen Energy 42:26217–30. doi:10.1016/j.ijhydene.2017.08.208.
  • Dou, B., H. Zhang, G. Cui, Z. Wang, B. Jiang, K. Wang, H. Chen, and Y. Xu. 2018. Hydrogen production by sorption-enhanced chemical looping steam reforming of ethanol in an alternating fixed-bed reactor: Sorbent to catalyst ratio dependencies. Energy Convers. Manag. 155:243–52. doi:10.1016/j.enconman.2017.10.075.
  • Götz, M., J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr,R. Reimert, and T. Kolb. 2015. Renewable power-to-gas: a technological and economic review. Renew. Energy 85:1371–90. doi:10.1016/j.renene.2015.07.066.
  • Han, L., Q. Wnag, Y. Yang, C. Yu, M. Fang, and Z. Luo. 2011. Hydrogen production via CaO sorption enhanced anaerobic gasification of sawdust in a bubbling fluidized bed. Int. J. Hydrogen. Energy 36:4820–26. doi:10.1016/j.ijhydene.2010.12.086.
  • InfoMine. 2019. http://www.infomine.com/investment/ruthenium/.
  • Mills, G. A., and F. W. Steffgen. 1974. Catalytic methanation. Catal. Rev. 8:159–210. doi:10.1080/01614947408071860.
  • Müller, S., J. Fuchs, J. C. Schmid, F. Benedikt, and H. Hofbauer. 2017. Experimental development of sorption enhanced reforming by the use of an advanced gasification test plant. Int. J. Hydrogen Energy 42:29694–707. doi:10.1016/j.ijhydene.2017.10.119.
  • Newton, J., “Power-to-gas and methanation e pathways to a ‘hydrogen economy’”, in: 14TH ANNUAL APGTF WORKSHOP - London, 2014. http://www.apgtf-uk.com/files/workshops/14thWorkshop2014/.
  • Panagiotopoulou, P., D. I. Kondarides, and X. E. Verykios. 2009. Selective methanation of CO over supported Ru catalysts. Appl. Catal. B 88:470–78. doi:10.1016/j.apcatb.2008.10.012.
  • Pleßmann, G., M. Erdmann, M. Hlusiak, and C. Breyer. 2014. Global energy storage demand for a 100% renewable electricity supply. Energy Procedia. 46:22–31. doi:10.1016/j.egypro.2014.01.154.
  • Powell, J. B., and S. H. Langer. 1985. Low-temperature methanation and Fischer–Tropsch activity over supported ruthenium, nickel, and cobalt catalysts. J. Catal. 94:566–69. doi:10.1016/0021-9517(85)90222-2.
  • Rönsch, S. 2015. Anlagenbilanzierung in der energietechnik – grundlagen, gleichungen und modelle für die ingenieurpraxis. 1st ed. Wiesbaden: Springer Vieweg.
  • Rönsch, S., J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, and S. Bajohr. 2016. Review on methanation – From fundamentals to current projects. Fuel 166:276–96. doi:10.1016/j.fuel.2015.10.111.
  • Sabatier, P., and J.-B. Senderens. 1902a. New methane synthesis. J. Chem. Soc. 82:333–37.
  • Sabatier, P., and J.-B. Senderens. 1902b. Comptes rendus des séances de l‘académie des sciences, section vi – chimie. Paris: Imprimerie Gauthier-Villars.
  • Seemann, M., “Methanation of biosyngas in a fluidized bed reactor –Development of a one-step synthesis process, featuring simultaneous methanation, watergas shift and low temperature tar reforming”, PhD thesis. ETH Zurich; 2006.
  • Seifert, A. H., S. Rittmann, and C. Herwig. 2014. Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis. Appl. Energy 132:155–62. doi:10.1016/j.apenergy.2014.07.002.
  • Smestad, G. P., and A. Steinfeld. 2012. Review: photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts. Ind. Eng. Chem. Res. 51:11828−11840. doi:10.1021/ie3007962.
  • Twigg, M. V. 1996. Catalyst handbook. second ed. London: Manson Publishing Ltd.
  • Wallbrecht, J. 2006. International gas union triennium 2003e2006-working committee 2: Underground gas storage. Amsterdam: International Systems and Communications Limited. http://members.igu.org/html/wgc2006/WOC2database/.
  • Walspurger, S., G. D. Elzinga, J. W. Dijkstra, M. Saric, and W. G. Haije. 2014. Sorption enhanced methanation for substitute natural gas production: Experimental results and thermodynamic considerations. Chem. Eng. J. 242:379–86. doi:10.1016/j.cej.2013.12.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.