330
Views
10
CrossRef citations to date
0
Altmetric
Research Article

A Shock Tube Study of Ethylene/Air Ignition Characteristics over a Wide Temperature Range

, , , , &
Pages 2297-2305 | Received 07 May 2019, Accepted 10 Jul 2019, Published online: 18 Jul 2019

References

  • Baker, J.A., and Skinner, G.B. 1972. Shock-tube studies on the ignition of ethylene-oxygen-argon mixtures. Combust. Flame 19:347–50. doi:10.1016/0010-2180(72)90004-1.
  • He, J.N., Gou, Y. D.,Lu, P.F., Zhang, C.H.,Li, P., and Li, X.Y. 2018. Shock tube measurements and kinetic modeling study on autoignitio characteristics of cyclohexanone. Combust. Flame 192:358–68. doi:10.1016/j.combustflame.2018.02.002.
  • Kalitan, D.M., Hall, J.M., andPetersen, E.L. 2005. Ignition and oxidation of ethylene-oxygen-diluent mixtures with and without silane. J. Propul. Power 21:1045–56. doi:10.2514/1.8026.
  • Kee,R.J.,Rupley, F.M., and Miller, J.A. 1989. Chemkin-II: A fortran chemical kinetics pack-age for the analysis of gas-phase chemical kinetics. Sandia National Laboratories, Sandia Report, SAND89-8009.
  • Kopp, M.M., Donato, N.S., Petersen, E.L., Metcalfe, W.K., Burke, S.M., and Curran, H.J. 2014a. Oxidation of ethylene–Air mixtures at elevated pressures, part 1: Experimental results. J. Propul. Power 30:790–98. doi:10.2514/1.B34890.
  • Kopp, M.M., Petersen, E.L., Metcalfe, K.W., Burke, S.M., and Curran, H.J. 2014b. Oxidation of ethylene—Air mixtures at elevated pressures, part 2: Chemical kinetics. J. Propul. Power 30:799–811. doi:10.2514/1.B34891.
  • Liang,J.H., Hu, H.H., Wang, S.,Zhang, S.T.,Fan, C.C., and Cui, J.P. 2014. Shock tube study of ethylene ignition characteristics at low dilution. Acta Phys. -Chim. Sin. 46 (1):155–59. doi:10.6052/0459-1879-13-027.
  • Metcalfe, W.K., Burke, S.M., Ahmed, S.S., and Curran, H.J. 2013. A hierarchical and comparative kinetic modeling study of C 1 − C 2 hydrocarbon and oxygenated. Fuels. Int. J. Chem. Kinet. 45 (10):638–75. doi:10.1002/kin.20802.
  • Penyazkov, O.G., Sevrouk, K.L., Tangirala, V., and Joshi, N. 2009. High-pressure ethylene oxidation behind reflected shock waves. Proc. Combust. Inst. 32:2421–28. doi:10.1016/j.proci.2008.06.194.
  • Saxena, S., Kahandawala, M.S.P., and Sidhu, S.S. 2011. A shock tube study of ignition delay in the combustion of ethylene. Combust. Flame 158:1019–31. doi:10.1016/j.combustflame.2010.10.011.
  • Shao, J., Davidson, D.F., and Hanson, R.K. 2018. A shock tube study of ignition delay times in diluted methane, ethylene, propene and their blends at elevated pressures. Fuel 225:370–80. doi:10.1016/j.fuel.2018.03.146.
  • Tereza, A.M., Slutskii, V.G., and Severin, E.S. 2010. Autoignition of ethylene in shock waves. Russ. J. Phys. Chem. B 4:475–85. doi:10.1134/S1990793110030176.
  • Yong, K.L., He, J.N., Zhang, W.F., Xian, L.Y, Zhang, C.H., Li, P., and Li, X.Y. 2017. Shock tube study of n-nonane/air ignition over a wide range of temperatures. Fuel 188:567–74. doi:10.1016/j.fuel.2016.09.054.
  • Zhang, C.H., Li, B., Rao, F., Li, P., and Li. X.Y. 2015. A shock tube study of the autoignition characteristics of RP-3 jet fuel. Proc. Combust. Inst. 35:3151–58. doi:10.1016/j.proci.2014.05.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.