342
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Experimental Characterization of Circumferentially Arranged Fuel Port Inverse Jet Diffusion Flame Burner

ORCID Icon & ORCID Icon
Pages 2306-2325 | Received 25 Jan 2019, Accepted 11 Jul 2019, Published online: 22 Jul 2019

References

  • Bradley, D., and A. Entwistle. 1961. Determination of the emissivity, for total radiation, of small diameter Platinum-10% Rhodium wires in the temperature range 600–1450 C. Br. J. Appl. Phys. 12 (12):708. doi:10.1088/0508-3443/12/12/328.
  • Chen, Y.-C., -C.-C. Chang, K.-L. Pan, and J.-T. Yang. 1998. Flame lift-off and stabilization mechanisms of nonpremixed jet flames on a bluff-body burner. Combust. Flame 115 (1–2):51–65. doi:10.1016/S0010-2180(97)00336-2.
  • Choudhuri, A. R., and S. Gollahalli. 2003. Characteristics of hydrogen–Hydrocarbon composite fuel turbulent jet flames. Int. J. Hydrogen Energy 28 (4):445–54. doi:10.1016/S0360-3199(02)00063-0.
  • Dally, B., D. Fletcher, and A. Masri. 1998. Flow and mixing fields of turbulent bluff-body jets and flames. Combust. Theor. Model. 2 (2):193–219. doi:10.1088/1364-7830/2/2/006.
  • Delichatsios, M. 1993. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships. Combust. Flame 92 (4):349–64. doi:10.1016/0010-2180(93)90148-V.
  • Dong, L., C. Cheung, and C. Leung. 2007. Heat transfer characteristics of an impinging inverse diffusion flame jet–Part I: Free flame structure. Int. J. Heat Mass Transf. 50 (25–26):5108–23. doi:10.1016/j.ijheatmasstransfer.2007.07.018.
  • Dong, L., C. Cheung, and C. Leung. 2011. Combustion optimization of a port-array inverse diffusion flame jet. Energy 36 (5):2834–46. doi:10.1016/j.energy.2011.02.025.
  • Hariharan, V., and D. P. Mishra. 2019. Static flame stability of circumferentially arranged fuel port inverse jet non-premixed flame burner. Combust. Sci. Technol. 1–27. doi:10.1080/00102202.2019.1611567.
  • Hu, L., Q. Wang, M. Delichatsios, F. Tang, X. Zhang, and S. Lu. 2013. Flame height and lift-off of turbulent buoyant jet diffusion flames in a reduced pressure atmosphere. Fuel 109:234–40. doi:10.1016/j.fuel.2012.12.050.
  • Kaplan, C., and K. Kailasanath. 2001. Flow-field effects on soot formation in normal and inverse methane–Air diffusion flames. Combust. Flame 124 (1–2):275–94. doi:10.1016/S0010-2180(00)00196-6.
  • Kiran, D., and D. Mishra. 2007. Experimental studies of flame stability and emission characteristics of simple LPG jet diffusion flame. Fuel 86 (10–11):1545–51. doi:10.1016/j.fuel.2006.10.027.
  • Lee, E.J., K.C. Oh, and H.D Shin. 2005. Soot formation in inverse diffusion flames of diluted ethene. Fuel, 84(5): 543–550. doi:10.1016/j.fuel.2004.11.003
  • Mahesh, S., and D. Mishra. 2008. Flame stability and emission characteristics of turbulent LPG IDF in a backstep burner. Fuel 87 (12):2614–19. doi:10.1016/j.fuel.2008.02.001.
  • Mahesh, S., and D. Mishra. 2010. Flame structure of LPG-air inverse diffusion flame in a backstep burner. Fuel 89 (8):2145–48. doi:10.1016/j.fuel.2010.01.030.
  • Mahesh, S., and D. Mishra. 2015. Characterization of swirling CNG inverse jet flame in recessed coaxial burner. Fuel 161:182–92. doi:10.1016/j.fuel.2015.08.022.
  • Miao, J., C. Leung, C. Cheung, Z. Huang, and W. Jin. 2016. Effect of H2 addition on OH distribution of LPG/Air circumferential inverse diffusion flame. Int. J. Hydrogen Energy 41 (22):9653–63. doi:10.1016/j.ijhydene.2016.02.105.
  • Mikofski, M. A., T. C. Williams, C. R. Shaddix, and L. G. Blevins. 2006. Flame height measurement of laminar inverse diffusion flames. Combust. Flame 146 (1–2):63–72. doi:10.1016/j.combustflame.2006.04.006.
  • Mishra, D. 2007. Fundamentals of combustion. Delhi, India: PHI Learning Pvt. Ltd. ISBN : 9788120333482
  • Ng, T., C. Leung, and C. Cheung. 2007. Experimental investigation on the heat transfer of an impinging inverse diffusion flame. Int. J. Heat Mass Transf. 50 (17–18):3366–75. doi:10.1016/j.ijheatmasstransfer.2007.01.046.
  • Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 9 (1):62–66. doi:10.1109/TSMC.1979.4310076.
  • Rabee, B. A. 2018. The effect of inverse diffusion flame burner-diameter on flame characteristics and emissions. Energy 160:1201–07. doi:10.1016/j.energy.2018.07.061.
  • Sidebotham, G. W., and I. Glassman. 1992. Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames. Combust. Flame 90 (3–4):269–83. doi:10.1016/0010-2180(92)90088-7.
  • Sobiesiak, A., and J. C. Wenzell. 2005. Characteristics and structure of inverse flames of natural gas. Proc. Combust. Inst. 30 (1):743–49. doi:10.1016/j.proci.2004.08.173.
  • Sze, L., C. Cheung, and C. Leung. 2004. Temperature distribution and heat transfer characteristics of an inverse diffusion flame with circumferentially arranged fuel ports. Int. J. Heat Mass Transf. 47 (14–16):3119–29. doi:10.1016/j.ijheatmasstransfer.2004.02.015.
  • Sze, L., C. Cheung, and C. Leung. 2006. Appearance, temperature, and NO x emission of two inverse diffusion flames with different port design. Combust. Flame 144 (1):237–48. doi:10.1016/j.combustflame.2005.07.008.
  • Takagi, T., Z. Xu, and M. Komiyama. 1996. Preferential diffusion effects on the temperature in usual and inverse diffusion flames. Combust. Flame 106 (3):252–60. doi:10.1016/0010-2180(95)00255-3.
  • Wang, Q., F. Tang, Z. Zhou, H. Liu, and A. Palacios. 2017. Flame height of axisymmetric gaseous fuel jets restricted by parallel sidewalls: Experiments and theoretical analysis. Appl. Energy 208:1519–26. doi:10.1016/j.apenergy.2017.08.230.
  • Wu, K.-T., and R. H. Essenhigh (1985) Mapping and structure of inverse diffusion flames of methane. In Symposium (International) on Combustion, Vol. 20 Elsevier, AnnArbor, MI, pp. 1925–32.
  • Zhen, H., Y. Choy, C. Leung, and C. Cheung. 2011. Effects of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner. Appl. Energy 88 (9):2917–24. doi:10.1016/j.apenergy.2011.02.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.