353
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Shock wave-Boundary Layer Interactions in Wedge-induced Oblique Detonations

, , &
Pages 2345-2370 | Received 19 Dec 2018, Accepted 17 Jul 2019, Published online: 13 Aug 2019

References

  • Ashford, S. A., and G. Emanuel. 1996. Oblique detonation wave engine performance prediction. J. Propul. Power 12 (2):322–27.
  • [Broda, J. C. 1993. An experimental study of oblique detonation waves. ph.D. thesis, Connecticut Univ.
  • Browne, S., J. Ziegler, and J. E. Shepherd. 2004. Numerical solution methods for shock and detonation jump conditions. Energy Conserv. 1 (w2):w2.
  • Choi, J.-Y., and I.-S. Jeung. 2016. Numerical simulation of super-detonative ram accelerator; its shock-induced combustion and oblique detonation. In: Seiler F., Igra O. (eds) Hypervelocity Launchers. Shock Wave Science and Technology Reference Library, vol 10. Springer, Cham.
  • Dolling, D. S., and M. T. Murphy. 1983. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA J. 21 (12):1628–34. doi:10.2514/3.60163.
  • [Han, X. 2013. Research on detonation initiation and propagation mechanisms in supersonic premixed flows. ph.D. thesis, Changsha, China, National University of Defense Technology
  • Ju, Y., and A. Sasoh. 1997. Numerical study of detonation initiation by a supersonic sphere. Trans. Jpn. Soc. Aeronaut. Space Sci. 40 (127):19–29.
  • Kailasanath, K. 2000. Review of propulsion applications of detonation waves. Aiaa J. 38 (9):1698–708. doi:10.2514/2.1156.
  • Kaneshige, M. J., and J. E. Shepherd. 1996. Oblique detonation stabilized on a hypervelocity projectile. Twenty-Sixth Symp. (Int.) Combust. 26:3015–22. doi:10.1016/S0082-0784(96)80145-7.
  • Kasahara, J., T. Arai, S. Chiba, K. Takazawa, Y. Tanahashi, and A. Matsuo. 2002. Criticality for stabilized oblique detonation waves around spherical bodies in acetylene/oxygen/krypton mixtures. Proc. Combust. Inst. 29:2817–24. doi:10.1016/S1540-7489(02)80344-3.
  • Lefebvre, M. H., and T. Fujiwara. 1995a. Numerical modeling of combustion processes induced by a supersonic conical blunt body. Combust. Flame 100 (1):85–93.
  • Lefebvre, M. H., and T. Fujiwara. 1995b. Numerical modeling of combustion processes induced by a supersonic conical blunt body. Combust. Flame 100 (1):85–93.
  • Li, C., K. Kailasanath, and E. S. Oran. 1993a. Detonation structures behind oblique shocks. Phys. Fluids 6 (4):1600–11. doi:10.1063/1.868273.
  • [Li, C., K. Kailasanath, and E. S. Oran. 1993b. Effecets of boundary layers on oblique-detonation structures. AIAA Paper 1993–0450
  • Liu, Y., Y. S. Liu, D. Wu, and J. P. Wang. 2016. Structure of an oblique detonation wave induced by a wedge. Shock Waves 26 (2):161–68.
  • Liu, Y., L. Wang, B. Xiao, Z. Yan, and C. Wang. 2018. Hysteresis phenomenon of the oblique detonation wave. Combust. Flame 192:170–79. doi:10.1016/j.combustflame.2018.02.010.
  • Liu, Y., J. Zhou, and Z. Lin. 2014. Ramp-induced oblique detonation wave with an incoming boudary layer effect. Acta Phys. Sin. 63 (20):221–28.
  • Liu, Y., J. Zhou, and Z. Lin. 2015. Numerical study on the standing morphology of an oblique detonation wave under the influence of an incoming boundary layer. Open Phys. 13:15–21.
  • Maeda, S., R. Inada, J. Kasahara, and A. Matsuo. 2011. Visualization of the non-steady state oblique detonation wave phenomena around hypersonic spherical projectile. Proc. Combust. Inst. 33:2343–49. doi:10.1016/j.proci.2010.06.066.
  • Maeda, S., J. Kasahara, and A. Matsuo. 2012. Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation. Combust. Flame 159 (2):887–96.
  • Maeda, S., S. Sumiya, J. Kasahara, and A. Matsuo. 2013. Initiation and sustaining mechanisms of stabilized oblique detonation waves around projectiles. Proc. Combust. Inst. 34:1973–80. doi:10.1016/j.proci.2012.05.035.
  • Miao, S., J. Zhou, S. Liu, and X. Cai. 2018. Formation mechanisms and characteristics of transition patterns in oblique detonations. Acta Astronaut 142:121–29. doi:10.1016/j.actaastro.2017.10.035.
  • Papalexandris, M. V. 2000. A numerical study of wedge-induced detonations. Combust. Flame 120 (4):526–38.
  • Silva, L. F. F. D., and B. Deshaies. 2000. Stabilization of an oblique detonation wave by a wedge: a parametric numerical study. Combust. Flame 121 (1–2):152–66.
  • [Spalart, P., and S. Allmaras. 1992. A one-equation turbulence model for aerodynamic flows. AIAA Paper 92–0439
  • Stull, D. R., and H. Prophet. 1971. JANAF thermodynamical tables.
  • Teng, H. H., and Z. L. Jiang. 2012. On the transition pattern of the oblique detonation structure. J. Fluid Mech. 713:659–69. doi:10.1017/jfm.2012.478.
  • Teng, H. H., H. D. Ng, and Z. L. Jiang. 2016. Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture. Proc. Combust. Inst. 36 (2):2735–42.
  • Teng, H. H., H. D. Ng, and Z. L. Jiang. 2017. Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture. Proc. Combust. Inst. 36 (2):2735–42.
  • Teng, H. H., Y. N. Zhang, and Z. L. Jiang. 2014. Numerical investigation on the induction zone structure of the oblique detonation waves. Comput. Fluids 95:127–31. doi:10.1016/j.compfluid.2014.03.001.
  • Teng, H. H., W. Zhao, and Z. L. Jiang. 2007. A novel oblique detonation structure and its stability. Chin. Phys. Lett. 24 (7):1985–88. doi:10.1088/0256-307X/24/7/055.
  • Valorani, M., M. Digiacinto, and C. Buongiorno. 2001. Performance prediction for oblique detonation wave engine (ODWE). Acta Astronaut. 48 (4):221–28.
  • Vasiljev, A. A. 1994. Initiation of gaseous detonation by a high speed body. Shock Waves 3:321–26. doi:10.1007/BF01415830.
  • Verreault, J., and A. J. Higgins. 2011. Initiation of detonation by conical projectiles. Proc. Combust. Inst. 33:2311–18. doi:10.1016/j.proci.2010.07.086.
  • Viguier, C., L. F. F. D. Silva, D. Desbordes, and B. Deshaies. 1996. Onset of oblique detonation waves:comparison between experimental and numerical results for hydrogen-air mixtures. Symp. (Int.) Combust. 26 (2):3023–31.
  • Vlasenko, V. V., and V. A. Sabel’nikov. 1995. Numerical simulation of inviscid flows with hydrogen combustion behind shock waves and in detonation waves. Combust. Explosion, and Shock Wave 31 (3):376–89.
  • Wang, A. F., W. Zhao, and Z. L. Jiang. 2011. The criterion of the existence or inexistence of transverse shock wave at wedge supported oblique detonation wave. Acta Mech. Sin. 27 (5):611–19.
  • Wang, T., Y. Zhang, H. Teng, Z. Jiang, and H. D. Ng. 2015. Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture. Phys. Fluids 27 (9):096101.
  • Wolański, P. 2013. Detonative propulsion. Proc. Combust. Inst. 34:125–58.
  • Yang, P., H. Teng, Z. Jiang, and H. D. Ng. 2018. Effects of inflow mach number on oblique detonation initiation with a two-step induction-reaction kinetic model. Combust. Flame 193:246–56. doi:10.1016/j.combustflame.2018.03.026.
  • Yang, P. F., H. D. Ng, H. H. Teng, and Z. L. Jiang. 2017. Initiation structure of oblique detonation waves behind conical shocks. Phys. Fluids 29:086104. doi:10.1063/1.4999482.
  • Yu, M., and S. Miao. 2018. Initiation characteristics of oblique detonation waves in turbulence flows. Acta Astronaut. 147:195–204. doi:10.1016/j.actaastro.2018.04.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.