700
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Combustion Dynamics in a Single-Element Lean Direct Injection Gas Turbine Combustor

, , , &
Pages 2371-2398 | Received 10 Sep 2018, Accepted 18 Jul 2019, Published online: 31 Jul 2019

References

  • Ajmani, K., H. C. Mongia, and P. Lee. (2014). CFD computations of emissions for LDI-2 combustors with simplex and airblast injectors. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH.
  • Ajmani, K., H. C. Mongia, and P. Lee. (2015). Parametric design of injectors for LDI-3 combustors. 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL.
  • Alkabie, H., G. Andrews, and N. Ahmad. (1988). Lean low NOx primary zones using radial swirlers. ASME Gas Turbine and Aero Engine Congress and Exposition.
  • Andrews, G. E., H. S. Alkabie, M. M. A. Aziz, U. S. A. Hussain, N. A. A. Dabbagh, N. A. Ahmad, A. F. A. A. Shaikly, M. Kowkabi, and A. R. Shahabadi. 1992. High-intensity burners with low nox emissions. Proc. Inst Mech. Eng., Part A: J. Power and energy 206 (1):3–17.
  • Beale, J. C., and R. D. Reitz. 1999. Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model. Atomization Sprays 9 (6):623–650.
  • Benjamin, T. B. 1962. Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14 (4):593–629. doi:10.1017/S0022112062001482.
  • Billant, P., J.-M. Chomaz, and P. Huerre. 1998. Experiment study of vortex breakdown in swirling jets. J. Fluid Mech. 376:183–219. doi:10.1017/S0022112098002870.
  • Bourgouin, J.-F., J. Moeck, D. Durox, T. Schuller, and S. Candel. 2013. Sensitivity of swirling flows to small changes in the swirler geometry. C.R. Mec. 341 (1–2):211–19. doi:10.1016/j.crme.2012.10.018.
  • Candel, S., D. Durox, T. Schuller, J.-F. Bourgouin, and J. P. Moeck. 2014. Dynamics of Swirling Flames. Annu. Rev. Fluid Mech. 46 (1):147–73. doi:10.1146/annurev-fluid-010313-141300.
  • Candel, S., D. Durox, T. Schuller, P. Palies, J.-F. Bourgouin, and J. P. Moeck. 2012. Progress and challenges in swirling flame dynamics. C.R. Mec. 340 (11–12):758–68. doi:10.1016/j.crme.2012.10.024.
  • Cooper, C. S., and N. M. Laurendeau. 2000. Quantitative measurements of nitric oxide in high-pressure (2–5 atm), swirl-stabilized spray flames via laser-induced fluorescence. Combust. Flame 123:175–88. doi:10.1016/S0010-2180(00)00165-6.
  • de la Cruz García, M., E. Mastorakos, and A. P. Dowling. 2009. Investigations on the self-excited oscillations in a kerosene spray flame. Combust. Flame 156 (2):374–84. doi:10.1016/j.combustflame.2008.11.018.
  • Franzelli, B., E. Riber, L. Y. M. Gicquel, and T. Poinsot. 2012. Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame. Combust. Flame 159 (2):621–37. doi:10.1016/j.combustflame.2011.08.004.
  • Frezzotti, M. L., F. Nasuti, C. Huang, C. L. Merkle, and W. E. Anderson. 2018. Quasi-1D modeling of heat release for the study of longitudinal combustion instability. Aerosp. Sci. Technol. 75:261–70. doi:10.1016/j.ast.2018.02.001.
  • Gejji, R., C. Huang, C. Fugger, C. Yoon, and W. E. Anderson. 2018. Parametric investigation of combustion instabilities in a single-element Lean Direct Injection (LDI) combustor. Int. J. Spray Combust. Dyn.. doi:10.1177/1756827718785851.
  • Gejji, R., C. Huang, R. Lucht, and W. E. Anderson. (2015). Concurrent experimental and computational study of combustion dynamics in a single-element Lean Direct Injection (LDI) gas turbine combustor. 51st AIAA/SAE/ASEE Joint Propulsion Conference. Orlando, FL.
  • Gicquel, L. Y. M., G. Staffelbach, and T. Poinsot. 2012. Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38:782–817. doi:10.1016/j.pecs.2012.04.004.
  • Giuliani, F., P. Gajan, O. Diers, and M. Ledoux. 2002. Influence of pulsed entire on a spray generated by an air-blast injection device_an experimental analysis on combustion instability processes in aeroengines. Proc. Combust. Inst. 29:91–98. doi:10.1016/S1540-7489(02)80016-5.
  • Hall, M. G. 1972. Vortex Breakdown. Annu. Rev. Fluid Mech. 4:195–218. doi:10.1146/annurev.fl.04.010172.001211.
  • Han, Z., S. Parrish, P. V. Farrell, and R. D. Reitz. 1997. Modeling atomization processes of pressure-swirl hollow-cone fuel sprays. Atomization and Sprays 7 (6). doi:10.1615/AtomizSpr.v7.i6.70.
  • Harvazinski, M. (2012). Modeling Self-excited Combustion Instabilities using a Combination of Two- and Three-dimensional Simulations. Doctor of Philosophy, Purdue University.
  • Harvazinski, M. E., C. Huang, V. Sankaran, T. W. Feldman, W. E. Anderson, C. L. Merkle, and D. G. Talley. 2015. Coupling between hydrodynamics, acoustics, and heat release in a self-excited unstable combustor. Phys. Fluids 27 (4):045102. doi:10.1063/1.4916673.
  • Heath, C. M. 2014. Characterization of Swirl-Venturi Lean Direct Injection Designs for Aviation Gas Turbine Combustion. J. Propul. Power 30 (5):1334–56. doi:10.2514/1.B35077.
  • Heath, C. M. 2016. Parametric modeling investigation for radially staged low-emission combustion. J. Propul. Power 32 (2):500–15. doi:10.2514/1.B35867.
  • Huang, C. (2015). Fundamental Insights into Combustion Instability Predictions in Aerospace Propulsion, Purdue University.
  • Huang, C., C. Yoon, R. Gejji, W. Anderson, and V. Sankaran. (2014). Computational study of combustion dynamics in a single-element Lean Direct Injection gas turbine combustor. 52nd Aerospace Sciences Meeting, National Harbor, Maryland, American Institute of Aeronautics and Astronautics.
  • Huang, C., K. Duraisamy, and C. Merkle. (2019b). Investigations and improvement of robustness of reduced-order models of reacting flow. AIAA Scitech 2019 Forum, San Diego, California.
  • Huang, C., W. E. Anderson, C. Merkle, and V. Sankaran. 2019a. Multifidelity framework for modeling combustion dynamics. AIAA J.. doi:10.2514/1.J057061.
  • Huang, C., W. E. Anderson, M. E. Harvazinski, and V. Sankaran. 2016. Analysis of self-excited combustion instabilities using decomposition techniques. AIAA J. 54 (9):1–17.
  • Huang, Y., S. Wang, and V. Yang. 2006. Systematic Analysis of Lean-Premixed Swirl-Stabilized Combustion. AIAA J. 44:724–740.
  • Huang, Y., and V. Yang. 2009. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35 (4):293–364. doi:10.1016/j.pecs.2009.01.002.
  • Ibrahim, A. A., and M. A. Jog. 2007. Nonlinear breakup model for a liquid sheet emanating from a pressure-swirl atomizer. J. Eng. Gas Turbines Power 129 (4):945–53. doi:10.1115/1.2747263.
  • Kim, K. T., and D. A. Santavicca. 2013. Interference mechanisms of acoustic/convective disturbances in a swirl-stabilized lean-premixed combustor. Combust. Flame 160 (8):1441–57. doi:10.1016/j.combustflame.2013.02.022.
  • Kojima, J. J., D. G. Fischer, and J.-Y. Chen. 2017. Code-validation scalar measurements in high-pressure hydrogen-added methane combustion. J. Propul. Power 33 (1):285–304. doi:10.2514/1.B36108.
  • Lacaze, G., B. Cuenot, T. Poinsot, and M. Oschwald. 2009. Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration. Combust. Flame 156 (6):1166–80. doi:10.1016/j.combustflame.2009.01.004.
  • Lian, C., G. Xia, and C. L. Merkle. 2009. Solution-limited time stepping to enhance reliability in CFD applications. J. Comput. Phys. 228 (13):4836–57. doi:10.1016/j.jcp.2009.03.040.
  • Liang, H., and T. Maxworthy. 2005. An experimental investigation of swirling jets. J. Fluid Mech. 525:115–59. doi:10.1017/S0022112004002629.
  • Moeck, J. P., J.-F. Bourgouin, D. Durox, T. Schuller, and S. Candel. 2012. Nonlinear interaction between a precessing vortex core and acoustic oscillations in a turbulent swirling flame. Combust. Flame 159 (8):2650–68. doi:10.1016/j.combustflame.2012.04.002.
  • Motheau, E., F. Nicoud, and T. Poinsot. 2014. Mixed acoustic-entropy combustion instabilities in gas turbines. J. Fluid Mech. 749:542–76. doi:10.1017/jfm.2014.245.
  • O’Rourke, P. J., and A. A. Amsden. (1987). The TAB method for numerical calculation of spray droplet breakup, SAE Technical Paper.
  • Oberleithner, K., M. Sieber, C. N. Nayeri, C. O. Paschereit, C. Petz, H. C. Hege, B. R. Noack, and I. Wygnanski. 2011. Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: Stability analysis and empirical mode construction. J. Fluid Mech. 679:383–414. doi:10.1017/jfm.2011.141.
  • Palies, P., D. Durox, T. Schuller, and S. Candel. 2011a. Experimental study on the effect of swirler geometry and swirl number on flame describing functions. Combust. Sci. Technol. 183 (7):704–17. doi:10.1080/00102202.2010.538103.
  • Palies, P., M. Ilak, and R. Cheng. 2017. Transient and limit cycle combustion dynamics analysis of turbulent premixed swirling flames. J. Fluid Mech. 830:681–707. doi:10.1017/jfm.2017.575.
  • Palies, P., T. Schuller, D. Durox, and S. Candel. 2011b. Modeling of premixed swirling flames transfer functions. Proc. Combust. Inst. 33 (2):2967–74. doi:10.1016/j.proci.2010.06.059.
  • Paschereit, C. O., E. Gutmark, and W. Weisenstein. 2000. Excitation of thermoacoustic instabilities by interaction of acoustics and unstable swirling flow. AIAA J. 38 (6):1025–34. doi:10.2514/2.1063.
  • Patterson, M. A., and R. D. Reitz (1998). Modeling the effects of fuel spray characteristics on diesel engine combustion and emission, SAE Technical Paper.
  • Philip, M., M. Boileau, R. Vicquelin, E. Riber, T. Schmitt, B. Cuenot, D. Durox, and S. Candel. 2015. Large Eddy Simulations of the ignition sequence of an annular multiple-injector combustor. Proc. Combust. Inst. 35 (3):3159–66. doi:10.1016/j.proci.2014.07.008.
  • Poinsot, T. J., A. C. Trouve, D. P. Veynante, S. M. Candel, and E. J. Esposito. 1987. Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177:265–92. doi:10.1017/S0022112087000958.
  • Providakis, T., L. Zimmer, P. Scouflaire, and S. Ducruix. 2013. Characterization of the coherent structures in swirling flames stabilized in a two-stage multi-injection burner: Influence of the staging factor. C.R. Mec. 34:4–14. doi:10.1016/j.crme.2012.10.010.
  • Quinlan, J. M., and B. T. Zinn (2014). “Transverse combustion instabilities: Modern experimental techniques and analysis.”
  • Rayleigh, L. 1878. The explanation of certain acoustical phenomena. Nature 18:319–21. doi:10.1038/018319a0.
  • Ren, X., C.-J. Sung, and H. C. Mongia. 2018. On lean direct injection research. In Energy for propulsion: A sustainable technologies approach, ed. A. K. Runchal, A. K. Gupta, A. Kushari, A. De, and S. K. Aggarwal, 3–26. Singapore: Springer Singapore.
  • Roy, S., T. Yi, N. Jiang, G. H. Gunaratne, I. Chterev, B. Emerson, T. Lieuwen, A. W. Caswell, and J. R. Gord. 2017. Dynamics of robust structures in turbulent swirling reacting flows. J. Fluid Mech. 816:554–85. doi:10.1017/jfm.2017.71.
  • Ruith, M. R., P. Chen, E. Meiburg, and T. Maxworthy. 2003. Three-dimensional vortex breakdown in swirling jets and wakes: Direct numerical simulation. J. Fluid Mech. 486:331–78. doi:10.1017/S0022112003004749.
  • Schmid, P. J. 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656:5–28. doi:10.1017/S0022112010001217.
  • Schuller, T., D. Durox, and S. Candel. 2003. A unified model for the prediction of laminar flame transfer functions. Combust. Flame 134 (1–2):21–34. doi:10.1016/S0010-2180(03)00042-7.
  • Senecal, P., D. P. Schmidt, I. Nouar, C. J. Rutland, R. D. Reitz, and M. Corradini. 1999. Modeling high-speed viscous liquid sheet atomization. Int. J. Multiphase Flow 25 (6):1073–97. doi:10.1016/S0301-9322(99)00057-9.
  • Staffelbach, G., L. Y. M. Gicquel, G. Boudier, and T. Poinsot. 2009. Large eddy simulation of self excited azimuthal modes in annular combustors. Proc. Combust. Inst. 32 (2):2909–16. doi:10.1016/j.proci.2008.05.033.
  • Steinberg, A. M., I. Boxx, M. Stöhr, C. D. Carter, and W. Meier. 2010. Flow–Flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor. Combustion and Flame 157 (12):2250–66. doi:10.1016/j.combustflame.2010.07.011.
  • Stöhr, M., I. Boxx, C. Carter, and W. Meier. 2011a. “ Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor„ . Proceedings of the Combustion Institute 33(2):2953–2960.
  • Stöhr, M., R. Sadanandan, and W. Meier. 2011b. Phase-resolved characterization of vortex–flame interaction in a turbulent swirl flame. Experiments in Fluids 51 (4):1153–1167.
  • Stopper, U., W. Meier, R. Sadanandan, M. Stöhr, M. Aigner, and G. Bulat. 2013. Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape. Combust. Flame 160 (10):2103–18. doi:10.1016/j.combustflame.2013.04.005.
  • Sweeney, M., and S. Hochgreb. 2009. Autonomous extraction of optimal flame fronts in OH planar laser-induced fluorescence images. Appl. Opt. 48 (19):3866–77. doi:10.1364/ao.48.003866.
  • Syred, N. 2006. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci. 32 (2):93–161. doi:10.1016/j.pecs.2005.10.002.
  • Tacina, K. M., P. Lee, H. Mongia, B. K. Dam, Z. J. He, and D. P. Podboy. (2016). A comparison of three second-generation swirl-venturi lean direct injection combustor concepts. 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT.
  • Tacina, R. (1990). Low NO(x) potential of gas turbine engines. 28th Aerospace Sciences Meeting, Reno, Nevada.
  • Tacina, R., C.-P. Mao, and C. Wey (2004). Experimental investigation of a multiplex fuel injector module with discrete jet swirlers for low emission combustors. 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada.
  • Travin, A., M. Shur, M. Strelets, and P. R. Spalart. 2002. Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. In Advances in LES of Complex Flows, R. Friedrich and W. Rodi. ed..,  Fluid Mechanics and Its Applications. Vol. 65. 239–54. Dordrecht: Springer Netherlands.
  • Urbano, A., L. Selle, G. Staffelbach, B. Cuenot, T. Schmitt, S. Ducruix, and S. Candel. 2016. Exploration of combustion instability triggering using large eddy simulation of a multiple injector liquid rocket engine. Combust. Flame 169:129–40. doi:10.1016/j.combustflame.2016.03.020.
  • Westbrook, C. K., and F. L. Dryer. 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 27 (1–2):31–43. doi:10.1080/00102208108946970.
  • Wilcox, D. C. 2008. Formulation of the k-w turbulence model revisited. AIAA J. 46 (11):2823–38. doi:10.2514/1.36541.
  • Wolf, P., R. Balakrishnan, G. Staffelbach, L. Y. M. Gicquel, and T. Poinsot. 2012. Using LES to study reacting flows and instabilities in annular combustion chambers. Flow, Turbul. Combust. 88 (1):191–206. doi:10.1007/s10494-011-9367-7.
  • Yi, T., and D. A. Santavicca. 2012. Flame spectra of a turbulent liquid-fueled swirl-stabilized lean-direct injection combustor. J. Propul. Power 25 (5):1058–67. doi:10.2514/1.43003.
  • Yoon, C., R. Gejji, C. Huang, W. Anderson, and V. Sankaran. (2013b). Computational investigation of combustion instabilities in a laboratory-scale LDI gas turbine engine. 49th AIAA/ASME/SAE/ASEE Joint PropulsionConference, American Institute of Aeronautics and Astronautics. San Jose, CA.
  • Yoon, C., R. Gejji, W. Anderson, and V. Sankaran. (2013a). Effects of fuel spray modeling on the combustion dynamics of lean direct injection model combustor. ILASS-Americas 25th Annual Conference on Liquid Atomization and Spray Systems, Pittsburgh, PA.
  • Yu, Y. C., J. C. Sisco, V. Sankaran, and W. E. Anderson. 2010. Effects of mean flow, entropy waves, and boundary conditions on longitudinal combustion instability. Combust. Sci. Technol. 182 (7):739–76. doi:10.1080/00102200903566449.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.