392
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Dripping and Fire Extinction Limits of Thin Wire: Effect of Pressure and Oxygen

, , ORCID Icon, , ORCID Icon, , & show all
Pages 437-452 | Received 17 Jun 2019, Accepted 17 Aug 2019, Published online: 25 Aug 2019

References

  • Bakhman, N., L. Aldabaev, B. Kondrikov, and V. Filippov. 1981. Burning of polymeric coatings on copper wires and glass threads: I. Flame propagation velocity. Combust. Flame 41:17–34. doi:10.1016/0010-2180(81)90036-5.
  • Bakhman, N., L. Aldabaev, B. Kondrikov, and V. Filippov. 1981. Burning of polymeric coatings on copper wires and glass threads: II. Combust. Flame 41:35–43. doi:10.1016/0010-2180(81)90037-7.
  • Baliga, B. R., and J. S. T’ien. 1975. Unsteady effects on low-pressure extinction limit of solid propellants. Aiaa J. 13:1653–56. doi:10.2514/3.7041.
  • Bergman, T. L., A. S. Lavine, F. P. Incropera, and D. P. DeWitt. 2015. Fundamentals of heat and mass transfer, 2011, Vol. 13, 470–978. USA: John Wiley & Sons ISBN.
  • Chief Fire & Rescue Adviser. 2012. Fire and rescue service operational guidance - aircraft incidents. London: Great Britain: Department for Communities and Local Government.
  • Fuentes, A., G. Legros, A. Claverie, P. Joulain, J.-P. Vantelon, and J. L. Torero. 2007. Interactions between soot and CH in a laminar boundary layer type diffusion flame in microgravity. Proc. Combust. Inst. 31 (2):2685–92. doi:10.1016/j.proci.2006.08.031.
  • Fujita, O., K. Nishizawa, and K. Ito. 2002. Effect of low external flow on flame spread over polyethylene-insulated wire in microgravity. Proc. Combust. Inst. 29:2545–52. doi:10.1016/S1540-7489(02)80310-8.
  • He, H., Q. Zhang, X. Wang, F. Wang, L. Zhao, and Y. Zhang. 2017. The influence of currents on the ignition and correlative smoke productions for PVC-Insulated electrical wires. Fire Technol. 53:1275–89. doi:10.1007/s10694-016-0634-y.
  • Huang, X. 2018. Critical drip size and blue flame shedding of dripping ignition in fire. Sci Rep 8:16528. doi:10.1038/s41598-018-34620-3.
  • Huang, X., Y. Nakamura, and F. A. Williams. 2013. Ignition-to-spread transition of externally heated electrical wire. Proc. Combust. Inst. 34:2505–12. doi:10.1016/j.proci.2012.06.047.
  • Kikuchi, M., O. Fujita, K. Ito, A. Sato, and T. Sakuraya. 1998. Experimental study on flame spread over wire insulation in microgravity. Symp. (Int.) Combust. 27:2507–14. doi:10.1016/S0082-0784(98)80102-1.
  • Kim, Y., A. Hossain, and Y. Nakamura. 2013. Numerical study of melting of a phase change material (PCM) enhanced by deformation of a liquid–gas interface. Int. J. Heat Mass. Transf. 63:101–12. doi:10.1016/j.ijheatmasstransfer.2013.03.052.
  • Kim, Y., A. Hossain, and Y. Nakamura. 2015. Numerical modeling of melting and dripping process of polymeric material subjected to moving heat flux: Prediction of drop time. Proc. Combust. Inst. 35:2555–62. doi:10.1016/j.proci.2014.05.068.
  • Kleinhenz, J., I. Feier, S. Hsu, J. Tien, P. Ferkul, and K. Sacksteder. 2008. Pressure modeling of upward flame spread and burning rates over solids in partial gravity. Combust. Flame 154:637–43. doi:10.1016/j.combustflame.2008.05.023.
  • Kobayashi, Y., X. Huang, S. Nakaya, M. Tsue, and C. Fernandez-Pello. 2017. Flame spread over wires: the role of dripping and core. Fire Saf. J. 91:112–22. doi:10.1016/j.firesaf.2017.03.047.
  • Kobayashi, Y., Y. Konno, X. Huang, S. Nakaya, M. Tsue, N. Hashimoto, O. Fujita, and C. Fernandez-Pello. 2018. Effect of insulation melting and dripping on opposed flame spread over laboratory simulated electrical wires. Fire Saf. J. 95:1–10. doi:10.1016/j.firesaf.2017.10.006.
  • Lim, S. J., M. Kim, J. Park, O. Fujita, and S. Chung. 2015. Flame spread over electrical wire with AC electric fields: Internal circulation, fuel vapor-jet, spread rate acceleration, and molten insulator dripping. Combust. Flame 162:1167–75. doi:10.1016/j.combustflame.2014.10.009.
  • Link, S., X. Huang, C. Fernandez-Pello, S. Olson, and P. Ferkul. 2018. The Effect of Gravity on Flame Spread over PMMA Cylinders. Sci Rep 8:120. doi:10.1038/s41598-017-18398-4.
  • Maynard, J. 2015. NASA Offers $2.25 Million For martian habitat design - how could this contest help people on earth?. Tech. Times. https://www.techtimes.com/articles/54113/20150519/know-design-3d-printed-habitat-mars-nasa-2-25-million.htm
  • Mendelson, R. A. 1965. Polyethylene melt viscosity: Shear rate‐temperature superposition. Trans. Soc. Rheol. 9:53–63. doi:10.1122/1.549006.
  • Miyamoto, K., X. Huang, N. Hashimoto, O. Fujita, and C. Fernandez-Pello. 2016. Limiting oxygen concentration (LOC) of burning polyethylene insulated wires under external radiation. Fire Saf. J. 86:32–40. doi:10.1016/j.firesaf.2016.09.004.
  • Nakamura, Y., N. Yoshimura, T. Matsumura, H. Ito, and O. Fujita. 2008b. Flame spread over polymer-insulated wire in sub-atmospheric pressure : similarity to microgravity phenomena. In Progress in scale modeling, ed. K. Saito, 17–27. New York, NY: Springer. doi:10.1007/978-1-4020-8682-3_2.
  • Nakamura, Y., and A. Aoki. 2008. Irradiated ignition of solid materials in reduced pressure atmosphere with various oxygen concentrations – for fire safety in space habitats. Adv. Space Res. 41:777–82. doi:10.1016/j.asr.2007.03.027.
  • Nakamura, Y., K. Azumaya, J. Iwakami, and K. Wakatsuki. 2015. Scale modeling of flame spread over pe-coated electric wires. progress in scale modeling, Vol. II 275–92. Cham: Springer International Publishing. doi:10.1007/978-3-319-10308-2_22.
  • Nakamura, Y., N. Yoshimura, H. Ito, K. Azumaya, and O. Fujita. 2009. Flame spread over electric wire in sub-atmospheric pressure. Proc. Combust. Inst. 32:2559–66. doi:10.1016/j.proci.2008.06.146.
  • Nakamura, Y., N. Yoshimura, T. Matsumura, H. Ito, and O. Fujita. 2008a. Opposed-wind effect on flame spread of electric wire in sub-atmospheric pressure. J. Therm. Sci. Technol. 3:430–41. doi:10.1299/jtst.3.430.
  • Olson, S. L., G. A. Ruff, and F. J. Miller. 2008. Microgravity flame spread in exploration atmospheres: pressure, oxygen, and velocity effects on opposed and concurrent flame spread. 38th International Conference on Environmental Systems 1:1–8. doi:10.4271/2008-01-2055.
  • Page, B. M., E. B. Robson, P. J. Cook, R. Sanger, and J. L. Watt. 1981. Flame spread in an opposed forced flow: the effect of ambient oxygen concentration. Symp. (Int.) Combust. 18:386–89. doi:10.1136/jmg.18.5.386.
  • Takahashi, S., H. Ito, Y. Nakamura, and O. Fujita. 2013. Extinction limits of spreading flames over wires in microgravity. Combust. Flame 160:1900–02. doi:10.1016/j.combustflame.2013.03.029.
  • Tewarson, A. 2004. Flammability of polymers. Plastics and the environment, 403–89. Hoboken, NJ, USA: John Wiley & Sons, Ltd. doi:10.1002/0471721557.ch11.
  • Thomsen, M., D. C. Murphy, C. Fernandez-pello, D. L. Urban, and G. A. Ruff. 2017. Flame spread limits (LOC) of fire resistant fabrics. Fire Saf. J. 91:259–65. doi:10.1016/j.firesaf.2017.03.072.
  • Wang, Y., J. Jow, K. Su, and J. Zhang. 2012. Dripping behavior of burning polymers under UL94 vertical test conditions. J. Fire Sci. 30:477–501. doi:10.1177/0734904112446125.
  • Zhao, Y., J. Chen, X. Chen, and S. Lu. 2017. Pressure effect on flame spread over polyethylene-insulated copper core wire. Appl. Therm. Eng. 123:1042–49. doi:10.1016/j.applthermaleng.2017.05.138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.