273
Views
4
CrossRef citations to date
0
Altmetric
Research Article

DFT Study on the C–NO Coupling Reaction with Different Active Sites

, , , , &
Pages 541-560 | Received 13 Jul 2019, Accepted 31 Aug 2019, Published online: 04 Sep 2019

References

  • Andrea, M., L. R. Oyarzún, and T. K. Radovic. 2015. An update on the mechanism of the graphene-NO reaction. Carbon 86:58–68. doi:10.1016/j.carbon.2015.01.020.
  • Arenillas, A., B. Arias, F. Rubiera, J. J. Pis, R. López, P. Campomanes, C. Pevida, and M. I. Menéndez. 2010. Heterogeneous reaction mechanisms of the reduction of nitric oxide on carbon surfaces: A theoretical analysis. Theory Chem. Acc. 127:95–108. doi:10.1007/s00214-009-0708-8.
  • Calderón, L. A., E. Chamorro, and J. F. Espinal. 2016. Mechanisms for homogeneous and heterogeneous formation of methane during the carbonehydrogen reaction over zigzag edge sites. Carbon 102:390–402. doi:10.1016/j.carbon.2016.02.052.
  • Calderón, L. A., J. Garza, and J. F. Espinal. 2015. Theoretical study of sodium effect on the gasification of carbonaceous materials with carbon dioxide. J Phys Chem A 119:12756–66. doi:10.1021/acs.jpca.5b07020.
  • Chen, N., and R. T. Yang. 1998a. Ab initio molecular orbital calculation on graphite: Selection of molecular system and model chemistry. Carbon 36 (7):1061–70. doi:10.1016/S0008-6223(98)00078-5.
  • Chen, N., and R. T. Yang. 1998b. Ab initio molecular orbital study of the unified mechanism and pathways for gas-carbon reactions. J Phys Chem A 102 (102):6348–56. doi:10.1021/jp981518g.
  • Chen, P., M. Y. Gu, X. Chen, and J. C. Chen. 2019a. Study of the reaction mechanism of oxygen to heterogeneous reduction of NO by char. Fuel 236:1213–25. doi:10.1016/j.fuel.2018.09.094.
  • Chen, P., M. Y. Gu, J. L. Wang, K. Lu, and Y. Y. Lin. 2019b. Reaction pathways for the reduction of NO by nitrogen-containing char. J. Fuel Chem. Technol. 47 (3):279–86.
  • Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA. Petersson, H. Nakatsuji, et al. 2013. Gaussian 09, revision e. 01. Wallingford CT: Gaussian, Inc.
  • Gao, Z. Y., S. K. Lv, W. J. Yang, P. F. Yang, S. Ji, and X. X. Meng. 2015. Quantum chemistry investigation on the reaction mechanism of the elemental mercury, chlorine, bromine and ozone system. J. Mol. Model 21 (6):1–9. doi:10.1007/s00894-014-2561-5.
  • Gao, Z. Y., W. J. Yang, X. L. Ding, Y. Ding, and W. P. Yan. 2017. Theoretical research on heterogeneous reduction of N2O by char. Appl. Therm. Eng. 126:28–36. doi:10.1016/j.applthermaleng.2017.07.166.
  • González, J. D., F. Mondragón, and J. F. Espinal. 2013. Effect of calcium on gasification of carbonaceous materials with CO2: A DFT study. Fuel 114:199–205. doi:10.1016/j.fuel.2012.04.039.
  • He, P., X. Zhang, X. Peng, X. Jiang, J. Wu, and N. Chen. 2015. Interaction of elemental mercury with defective carbonaceous cluster. J. Hazard. Mater. 300:289–97. doi:10.1016/j.jhazmat.2015.07.017.
  • Ibarra, J. V., and J. L. Miranda. 1996. Detection of weathering in stockpiled coals by Fourier transform infrared spectroscopy. Vib. Spectrosc. 10:311–18. doi:10.1016/0924-2031(95)00060-7.
  • Jiao, A. Y., H. Zhang, J. X. Liu, J. Shen, and X. M. Jiang. 2017. The role of CO played in the nitric oxide heterogeneous reduction: A quantum chemistry study. Energy 141:1538–46. doi:10.1016/j.energy.2017.11.115.
  • Kambara, S., T. Takarada, M. Toyoshima, and K. Kato. 1995. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion. Fuel 74:1247–53. doi:10.1016/0016-2361(95)00090-R.
  • Kyotani, T., and A. Tomita. 1999. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory. J Phys Chem B 103 (17):3434–41. doi:10.1021/jp9845928.
  • Li, H. B., Y. Yu, M. F. Han, and Z. Lei. 2014. Simulation of coal char gasification using O2/CO2. Int. J. Coal Sci. Technol. 1 (1):81–87. doi:10.1007/s40789-014-0010-9.
  • Liu, L., J. Jin, Y. Y. Lin, F. X. Hou, and S. J. Li. 2016. The effect of calcium on nitric oxide heterogeneous adsorption on carbon: A first-principles study. Energy 106:212–20. doi:10.1016/j.energy.2016.02.148.
  • Montoya, A., F. Mondragón, and T. N. Truong. 2002. First-principles kinetics of CO desorption from oxygen species on carbonaceous surface. J Phys Chem A 106:4236–39. doi:10.1021/jp0144294.
  • Montoya, A., T. N. Truong, and A. F. Sarofim. 2000. Application of density functional theory to the study of the reaction of NO with char-bound nitrogen during combustion. J Phys Chem A 104:8409–17. doi:10.1021/jp001045p.
  • Montoya, A., T. T. T. Truong, F. Mondragón, and T. N. Truong. 2001. CO desorption from oxygen species on carbonaceous surface: 1. Effects of the local structure of the active site and the surface coverage. J Phys Chem A 105:6757–64. doi:10.1021/jp010572l.
  • Oyarzún, A. M., S.-C. AJA, X. A. García-Carmona, and L. R. Radovic. 2016. Kinetics of oxygen transfer reactions on the graphene surface: Part I. NO vs. O2. Carbon 99:472–84. doi:10.1016/j.carbon.2015.12.005.
  • Padak, B., and J. Wilcox. 2009. Understanding mercury binding on activated carbon. Carbon 47:2855–64. doi:10.1016/j.carbon.2009.06.029.
  • Raj, A., S. Y. Yang, D. Cha, R. Tayouo, and S. H. Chung. 2013. Structural effects on the oxidation of soot particles by O2: Experimental and theoretical study. Combust. Flame 160:1812–26. doi:10.1016/j.combustflame.2013.03.010.
  • Raj, A., Z. Zainuddin, M. Sander, and M. Kraft. 2011. A mechanistic study on the simultaneous elimination of soot and nitric oxide from engine exhaust. Carbon 49:1516–31. doi:10.1016/j.carbon.2010.12.005.
  • Sander, M., A. Raj, O. Inderwildi, M. Kraft, S. Kureti, and H. Bockhorn. 2009. The simultaneous reduction of nitric oxide and soot in emissions from diesel engines. Carbon 47:866–75. doi:10.1016/j.carbon.2008.11.043.
  • Sendt, K., and B. S. Haynes. 2005a. Density functional study of the reaction of carbon surface oxides: The behavior of ketones. J Phys Chem A 109:3438–47. doi:10.1021/jp045111p.
  • Sendt, K., and B. S. Haynes. 2005b. Density functional study on the chemisorption of O2 on the zig-zag surface of graphite. Combust. Flame 143:629–43. doi:10.1016/j.combustflame.2005.08.026.
  • Silva-Tapia, A. B., X. García-Carmona, and L. R. Radovic. 2012. Similarities and differences in O2 chemisorption on graphene nanoribbon vs. carbon nanotube. Carbon 50:1152–62. doi:10.1016/j.carbon.2011.10.028.
  • Stanczyk, K. 1999. Nitrogen oxide evolution from nitrogen-containing model chars combustion. Energy Fuels 13:82–87. doi:10.1021/ef9801017.
  • Wang, D. M., H. H. Xin, X. Y. Qi, G. L. Dou, G. S. Qi, and L. Y. Ma. 2016. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combust. Flame 163:447–60. doi:10.1016/j.combustflame.2015.10.019.
  • Wang, X. B., Y. Y. Xiong, H. Z. Tan, Y. Y. Liu, Y. Q. Niu, and T. G. Xu. 2012. Influences of CO and O2 on the reduction of N2O by biomass char. Energy Fuels 26:3125–31. doi:10.1021/ef201738s.
  • Wigner, E. 1932. Concerning the excess of potential barriers in chemical reactions. Z. Phys. Chem. B Chem. E 19:203–16.
  • Xiao, W., Y. Li, M. Xiao, J. C. Wang, and W. D. Fan. 2011. Influence mechanism of oxygen concentration on heterogeneous reduction of nitric oxide by char under high temperature. Boil. Technol. 42 (5):1–6.
  • Yang, F. H., and R. T. Yang. 2002. Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: Insight into hydrogen storage in carbon nanotubes. Carbon 40:437–44. doi:10.1016/S0008-6223(01)00199-3.
  • Zhang, H., X. M. Jiang, J. X. Liu, and J. Shen. 2014a. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups. Energy Convers. Manage. 83:167–76. doi:10.1016/j.enconman.2014.03.067.
  • Zhang, H., X. M. Jiang, J. X. Liu, and J. Shen. 2014b. New insights into the heterogeneous reduction reaction between NO and char-bound nitrogen. Ind. Eng. Chem. Res. 53:6307–15. doi:10.1021/ie403920j.
  • Zhang, H., J. X. Liu, J. Shen, and X. M. Jiang. 2015. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion. Energy 82:312–21. doi:10.1016/j.energy.2015.01.040.
  • Zhang, H., J. X. Liu, X. Y. Wang, and X. M. Jiang. 2016. Density functional theory study on two different oxygen enhancement mechanisms during NO–Char interaction. Combust. Flame 169:11–18. doi:10.1016/j.combustflame.2016.03.023.
  • Zhang, H., J. X. Liu, X. Y. Wang, L. Luo, and X. M. Jiang. 2017. DFT study on the C(N)-NO reaction with isolated and contiguous active sites. Fuel 203:715–24. doi:10.1016/j.fuel.2017.05.023.
  • Zhang, J. W., S. Z. Sun, Y. J. Zhao, X. D. Hu, G. W. Xu, and Y. K. Qin. 2011. Effects of inherent metals on NO reduction by coal char. Energy Fuel 25:5605–10. doi:10.1021/ef201323j.
  • Zhang, X., Z. Zhou, J. Zhou, J. Liu, and K. Cen. 2012. Density functional study of NO desorption from oxidation of nitrogen containing char by O. Combust. Sci. Technol. 184 (4):445–55. doi:10.1080/00102202.2011.648031.
  • Zhang, X. X. 2012. Nitrogen conversion mechanism during char combustion and develepment of low nox technology. Zhejiang: Zhejiang University.
  • Zhao, Z. B., W. Li, and B. Q. Li. 2001. Influence mechanism of O2 on NO-char reaction. J. China Univ. Min. Technol. 30 (5):484–87.
  • Zhou, Z., X. Zhang, J. Zhou, J. Liu, and K. Cen. 2014. A molecular modeling study of N2 desorption from NO heterogeneous reduction on char. Energy Sources Part A 36 (2):158–66. doi:10.1080/15567036.2010.506477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.