167
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Experimental Study on the Effect of Chemical Composite Additives on Heat Release Characteristics of Coal Oxidation Spontaneous Combustion

, , , , &
Pages 561-576 | Received 18 Apr 2019, Accepted 02 Sep 2019, Published online: 08 Sep 2019

References

  • Budrugeac, P., D. Homentcovschi, and E. Segal. 2000. Critical analysis of the isoconversional methods for evaluating the activation energy I. Theoretical background. J. Therm. Anal. Calorim. 63 (2):457–63. doi:10.1023/A:1010148611036.
  • Colaizzi, G. J. 2004. Prevention, control and/or extinguishment of coal seam fires using cellular grout. Int. J. Coal. Geol. 59 (1–2):75–81. doi:10.1016/j.coal.2003.11.004.
  • Cui, C. B., S. G. Jiang, and W. Q. Zhang. 2017. Experimental study on the effect of thermo-responsive secundine inhibitor on coal spontaneous combustion. Energ. Fuel. 31 (12):14262–69. doi:10.1021/acs.energyfuels.7b02814.
  • Cui, C. B., S. G. Jiang, and W. Q. Zhang. 2018. Influence of different concentrations of ionic solutions on coal spontaneous combustion. Combust. Sci. Technol. 190 (10):1817–31. doi:10.1080/00102202.2018.1473860.
  • Cummings, J., P. Tremain, K. Shah, E. Heldt, B. Moghtaderi, R. Atkin, S. Kundu, and H. Vuthaluru. 2017. Modification of lignites via low temperature ionic liquid treatment. Fuel Process. Technol. 155:51–58. doi:10.1016/j.fuproc.2016.02.040.
  • Deng, J., Z. J. Bai, Y. Xiao, and C. M. Shu. 2018. Effects on the activities of coal microstructure and oxidation treated by imidazolium-based ionic liquids. J. Therm. Anal. Calorim. 133 (1):453–63. doi:10.1007/s10973-018-7310-z.
  • Deng, J., Q. W. Li, Y. Xiao, and C. M. Shu. 2017. Experimental study on the thermal properties of coal during pyrolysis, oxidation, and re-oxidation. Appl. Therm. Eng. 110:1137–52. doi:10.1016/j.applthermaleng.2016.09.009.
  • Dou, G. L., D. M. Wang, X. X. Zhong, and B. T. Qin. 2014. Effectiveness of catechin and poly(ethylene glycol) at inhibiting the spontaneous combustion of coal. Fuel Process. Technol. 120:123–27. doi:10.1016/j.fuproc.2013.12.016.
  • Kim, A. G. 2004. Cryogenic injection to control a coal waste bank fire. Int. J. Coal. Geol. 59 (1–2):63–73. doi:10.1016/j.coal.2003.08.009.
  • Kong, B., Z. H. Li, Y. L. Yang, Z. Liu, and D. C. Yan. 2017. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Environ. Sci. Pollut. R. 24 (30):23453–70. doi:10.1007/s11356-017-0209-6.
  • Kuenzer, C., and G. B. Stracher. 2012. Geomorphology of coal seam fires. Geomorphology 138 (1):209–22. doi:10.1016/j.geomorph.2011.09.004.
  • Li, J. H., Z. H. Li, Y. L. Yang, and C. J. Wang. 2018. Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion. Fuel Process. Technol. 171:350–60. doi:10.1016/j.fuproc.2017.09.027.
  • Li, P. F., H. Shao, S. G. Jiang, Z. Y. Wu, C. B. Cui, and X. M. Shi. 2019. Experimental study on the inhibitory effects and mechanisms of crystalliferous water-containing mineral salts. Combust. Sci. Technol. 191 (3):403–18. doi:10.1080/00102202.2018.1492569.
  • Li, Z. H., B. Kong, A. Z. Wei, Y. L. Yang, Y. B. Zhou, and L. Z. Zhang. 2016. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method. Environ. Sci. Pollut. R. 23 (23):23593–605. doi:10.1007/s11356-016-7589-x.
  • Pan, R. K., Z. J. Xiao, and M. G. Yu. 2017. The characteristics of methane combustion suppression by water mist and its engineering applications. Energies 10:1566. doi:10.3390/en10101566.
  • Pan, R. K., L. G. Zheng, M. G. Yu, and C. Lu. 2012. Research of new material restraining coal spontaneous combustion by the way of release water mist. Adv. Mater. Res. 548:807–11. doi:10.4028/www.scientific.net/AMR.548.807.
  • Pandey, J., N. K. Mohalik, and R. K. Mishra. 2015. Investigation of the role of fire retardants in preventing spontaneous heating of coal and controlling coal mine fires. Fire Technol. 51 (2):227–45. doi:10.1007/s10694-012-0302-9.
  • Pulati, N., M. Sobkowiak, J. P. Mathews, and P. Painter. 2012. Low-temperature treatment of illinois No. 6 coal in ionic liquids. Energ. Fuel. 26 (6):3548–52. doi:10.1021/ef3002923.
  • Qin, B. T., G. L. Dou, Y. Wang, H. H. Xin, L. Y. Ma, and D. M. Wang. 2017. A superabsorbent hydrogel–Ascorbic acid composite inhibitor for the suppression of coal oxidation. Fuel 190:129–35. doi:10.1016/j.fuel.2016.11.045.
  • Slovák, V., and B. Taraba. 2012. Urea and CaCl2 as inhibitors of coal low-temperature oxidation. J. Therm. Anal. Calorim. 110 (1):363–67. doi:10.1007/s10973-012-2482-4.
  • Song, Z. Y., and C. Kuenzer. 2014. Coal fires in China over the last decade: A comprehensive review. Int. J. Coal. Geol. 133:72–99. doi:10.1016/j.coal.2014.09.004.
  • Tahmasebi, A., J. L. Yu, Y. Han, and X. C. Li. 2012. A study of chemical structure changes of Chinese lignite during fluidized-bed drying in nitrogen and air. Fuel Process. Technol. 101:85–93. doi:10.1016/j.fuproc.2012.04.005.
  • Tang, Y. B. 2018. Experimental investigation of applying MgCl2 and phosphates to synergistically inhibit the spontaneous combustion of coal. J. Energy Inst. 91 (5):639–45. doi:10.1016/j.joei.2017.06.006.
  • Tang, Y. B., and S. Xue. 2017. Influence of long-term water immersion on spontaneous combustion characteristics of Bulianta bituminous coal. Int. J. Oil Gas Coal T. 14 (4):398–411. doi:10.1504/IJOGCT.2017.083065.
  • Taraba, B., R. Peter, and V. Slovák. 2011. Calorimetric investigation of chemical additives affecting oxidation of coal at low temperatures. Fuel Process. Technol. 92 (3):712–15. doi:10.1016/j.fuproc.2010.12.003.
  • Vyazovkin, S., A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli. 2011. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520 (1–2):1–19. doi:10.1016/j.tca.2011.03.034.
  • Wang, D. M., H. H. Xin, X. Y. Qi, G. L. Dou, G. S. Qi, and L. Y. Ma. 2016a. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combust. Flame. 163:447–60. doi:10.1016/j.combustflame.2015.10.019.
  • Wang, G., G. Q. Yan, X. H. Zhang, W. Z. Du, Q. M. Huang, L. L. Sun, and X. Q. Zhang. 2016b. Research and development of foamed gel for controlling the spontaneous combustion of coal in coal mine. J. Loss. Prevent. Proc. 44:474–86. doi:10.1016/j.jlp.2016.10.013.
  • Wang, L. Y., Y. L. Xu, S. G. Jiang, M. G. Yu, T. X. Chu, W. Q. Zhang, Z. Y. Wu, and L. W. Kou. 2012. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal. Safety Sci. 50 (7):1528–34. doi:10.1016/j.ssci.2012.03.006.
  • Xi, Z. L., X. Y. Guo, and J. Y. Richard Liew. 2018. Investigation of thermoplastic powder synergizing polymorphic foam to inhibit coal oxidation at low temperature. Fuel 226:490–97. doi:10.1016/j.fuel.2018.04.035.
  • Yang, Y. L., Z. H. Li, L. L. Si, S. S. Hou, Y. B. Zhou, and Q. Q. Qi. 2017. Consolidation grouting technology for fire prevention in mined‐out areas of working face with large inclined angle and its application. Fire Mater. 41 (6):700–15. doi:10.1002/fam.v41.6.
  • Zhai, X. W., B. Wang, K. Wang, and O. Dariusz. 2018. Study on the influence of water immersion on the characteristic parameters of spontaneous combustion oxidation of low-rank bituminous coal. Combust. Sci. Technol. doi:10.1080/00102202.2018.1511544.
  • Zhang, L. L., B. M. Shi, B. T. Qin, Q. Wu, and V. C. Dao. 2017. Characteristics of foamed gel for coal spontaneous combustion prevention and control. Combust. Sci. Technol. 189 (6):980–90. doi:10.1080/00102202.2016.1264942.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.