336
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Effect of Igneous Intrusions on Low-temperature Oxidation Characteristics of Coal in Daxing Mine, China

, , , &
Pages 577-593 | Received 25 May 2019, Accepted 02 Sep 2019, Published online: 15 Sep 2019

References

  • Arisoy, A., and B. Beamish. 2015. Mutual effects of pyrite and moisture on coal self-heating rates and reaction rate data for pyrite oxidation. Fuel 139 (1):107–14. doi:10.1016/j.fuel.2014.08.036.
  • Avila, C., T. Wu, and E. Lester. 2014. Estimating the spontaneous combustion potential of coals using thermogravimetric analysis. Energy Fuels 28 (3):1765–73. doi:10.1021/ef402119f.
  • Barker, C. E., Y. Bone, and M. D. Lewan. 1998. Fluid inclusion and vitrinite-reflectance geothermometry compared to heat-flow models of maximum paleotemperature next to dikes, western onshore Gippsland Basin, Australia. International Journal of Coal Geology 37 (1–2):73–111. doi:10.1016/S0166-5162(98)00018-4.
  • Beamis, B. B., and M. A. Barakat. 2001. Spontaneous-combustion propensity of New Zealand coals under adiabatic conditions. International Journal of Coal Geology 45 (2–3):217–24. doi:10.1016/S0166-5162(00)00034-3.
  • Cao, D. Y., W. F. Zhan, and X. M. Li. 2007. Effect of intrusion of the Shangcheng granite body on structural framework of the Yangshan coal-bearing series, the Beihuaiyang area, China. Journal of China University of Mining and Technology 36(3):320–24.
  • Chen, J., G. Liu, H. Li, and B. Wu. 2014. Mineralogical and geochemical responses of coal to igneous intrusion in the Pansan Coal Mine of the Huainan coalfield, Anhui, China. International Journal of Coal Geology 124 (1):11–35. doi:10.1016/j.coal.2013.12.018.
  • Cooper, J. R., J. C. Crelling, S. M. Rimmer, and A. G. Whittington. 2007. Coal metamorphism by igneous intrusion in the Raton Basin, CO and NM: Implication for generation of volatiles. International Journal of Coal Geology 71 (1):15–27. doi:10.1016/j.coal.2006.05.007.
  • Dai, G. L., D. M. Wang, and G. S. Zhang. 2003. Discussion on static oxygen absorption test of coal at room temperature. Journal of Liaoning Technical University (china) 22 (4):475–77.
  • Dai, S. F., and D. Y. Ren. 2007. Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng-Handan coalfield, Hebei, China. Energy&Fuels 21 (3):1663–73.
  • Deng, J., J. Zhao, Y. Zhang, A. Huang, X. Liu, X. Zhai, and C. Wang. 2016. Thermal analysis of spontaneous combustion behavior of partially oxidized coal. Process Safety and Environmental Protection 104:218–24. doi:10.1016/j.psep.2016.09.007.
  • Dutta, S., C. Hartkopf-Fröder, K. Witte, R. Brocke, and U. Mann. 2013. Molecular characterization of fossil palynomorphs by transmission micro-FTIR spectroscopy: Implications for hydrocarbon source evaluation. International Journal of Coal Geology 115 (4):13–23. doi:10.1016/j.coal.2013.04.003.
  • Geng, W., T. Nakajima, H. Takanashi, and A. Ohki. 2009. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry. Fuel 88 (1):139–44. doi:10.1016/j.fuel.2008.07.027.
  • Golab, A. N., and P. F. Carr. 2004. Changes in geochemistry and mineralogy of thermally altered coal, Upper Hunter Valley, Australia. International Journal of Coal Geology 57 (3–4):197–210. doi:10.1016/j.coal.2003.12.011.
  • Jiang, J. Y., Y. P. Cheng, L. Wang, F. H. An, and H. N. Jiang. 2011. Effect of magma intrusion on the occurrence of coal gas in the Wolonghu coalfield. Mining Science and Technology (china) 21 (5):737–41. doi:10.1016/j.mstc.2011.10.002.
  • Jiang, J. Y., Q. Zhang, Y. P. Cheng, K. Jin, W. Zhao, and H. J. Guo. 2016. Influence of thermal metamorphism on CBM reservoir characteristics of low-rank bituminous coal. Journal of Natural Gas Science and Engineering 36 (A):916–30. doi:10.1016/j.jngse.2016.11.030.
  • Kadioğlu, Y., and M. Varamaz. 2003. The effect of moisture content and air-drying on spontaneous combustion characteristics of two Turkish lignitesa. Fuel 82 (13):1685–93. doi:10.1016/S0016-2361(02)00402-7.
  • Kok, M. V., and A. S. Gundogar. 2013. DSC study on combustion and pyrolysis behaviors of Turkish crude oils. Fuel Processing Technology 116:110–15. doi:10.1016/j.fuproc.2013.05.001.
  • Küçük, A., Y. Kadıoğlu, and M. Ş. Gülaboğlu. 2003. A study of spontaneous combustion characteristics of a Turkish lignite: Particle size, moisture of coal, humidity of air. Combust and Flame 133 (3):255–61. doi:10.1016/S0010-2180(02)00553-9.
  • Liu, H. W., and B. Jiang. 2019. Differentiated evolution of coal macromolecules in localized igneous intrusion zone: A case study of Zhuxianzhuang colliery, Huaibei coalfield, China. Fuel 254:115692. doi:10.1016/j.fuel.2019.115692.
  • Ma, D., B. T. Qin, S. Song, H. J. Liang, and A. Gao. 2017. An experimental study on the effects of air humidity on the spontaneous combustion characteristics of coal. Combustion Science and Technology 189 (12):2209–19. doi:10.1080/00102202.2017.1368500.
  • Mastalerz, M., A. Drobniak, and A. Schimmelmann. 2009. Changes in optical properties, chemistry, and micropore and mesopore characteristics of bituminous coal at the contact with dikes in the Illinois Basin. International Journal of Coal Geology 77 (3–4):310–19. doi:10.1016/j.coal.2008.05.014.
  • Meng, X. L., M. Q. Gao, R. Z. Chu, G. G. Wu, and Q. Fang. 2016. Multiple linear equation of pore structure and coal–Oxygen diffusion on low temperature oxidation process of lignite. Chinese Journal Chemical Engineering 24 (6):818–23. doi:10.1016/j.cjche.2016.05.007.
  • Nugroho, Y. S., A. McIntosh, and B. M. Gibbs. 2000. Low-temperature oxidation of single and blended coals. Fuel 79 (15):1951–61. doi:10.1016/S0016-2361(00)00053-3.
  • Pone, J. D., K. A. Hein, G. Stracher, H. Annegarn, R. Finkleman, D. Blake, J. McCormack, P. Schroeder. 2007. The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. International Journal of Coal Geology. 72(2):124–40. doi:10.1016/j.coal.2007.01.001.
  • Qi, F., Z. H. Li, S. K. Pan, L. Zhang. 2006. Calculation of apparent activation energy of coal oxidation at low temperatures by measuring CO yield. Journal of China University of Mining and Technology 16 (1):37–41.
  • Qi, X. Y., D. M. Wang, J. A. Milke, and X. X. Zhong. 2011. Crossing point temperature of coal. Mining Science Technology (China) 21 (2):255–60. doi:10.1016/j.mstc.2011.02.024.
  • Qin, B. T., G. L. Dou, and X. X. Zhong. 2018. Effect of stannous chloride on low-temperature oxidation reaction of coal. Fuel Processing Technology 176:59–63. doi:10.1016/j.fuproc.2018.03.021.
  • Raymond, A. C., and D. G. Murchison. 1992. Effect of igneous activity on molecular-maturation indices in different types of organic matter. Organtic Geochemistry 18 (5):725–35. doi:10.1016/0146-6380(92)90098-I.
  • Rimmer, S. M., L. E. Yoksoulian, and J. C. Hower. 2009. Anatomy of an intruded coal, I: Effect of contact metamorphism on whole-coal geochemistry, Springfield (No. 5)(Pennsylvanian) coal, Illinois Basin. International Journal of Coal Geology 79 (3):74–82. doi:10.1016/j.coal.2009.06.002.
  • Shi, Q. L., and B. T. Qin. 2019. Experimental research on gel-stabilized foam designed to prevent and control spontaneous combustion of coal. Fuel 254:115558. doi:10.1016/j.fuel.2019.05.141.
  • Shi, Q. L., B. T. Qin, Q. Bi, and B. Qu. 2018b. An experimental study on the effect of igneous intrusions on chemical structure and combustion characteristics of coal in Daxing Mine, China. Fuel 226:307–15. doi:10.1016/j.fuel.2018.04.027.
  • Shi, Q. L., B. T. Qin, Q. Bi, and B. Qu. 2018c. Fly ash suspensions stabilized by hydroxypropyl guar gum and xanthan gum for retarding spontaneous combustion of coal. Combustion Science and Technology 190 (12):2097–110. doi:10.1080/00102202.2018.1491845.
  • Shi, Q. L., B. T. Qin, H. J. Liang, Y. Gao, Q. Bi, and B. Qu. 2018a. Effects of igneous intrusions on the structure and spontaneous combustion propensity of coal: A case study of bituminous coal in Daxing Mine, China. Fuel 216:181–89. doi:10.1016/j.fuel.2017.12.012.
  • Singh, R. V. K. 2013. Spontaneous heating and fire in coal mines. Procedia Engineering 62:78–90. doi:10.1016/j.proeng.2013.08.046.
  • Slovák, V., and B. Taraba. 2010. Effect of experimental conditions on parameters derived from TG-DSC measurements of low-temperature oxidation of coal. Journal of Thermal Analysis and Calorimetry 2010 101 (2):641–46. doi:10.1007/s10973-010-0878-6.
  • Smędowski, Ł., S. Duber, and A. Matuszewska. 2015. An effect of igneous intrusion on the structure, texture and microtexture of coal from the Sośnica coal mine, Upper Silesian Coal Basin, Poland. Geological Quarterly 59 (3):507–16.
  • Song, Y., B. Jiang, and Y. Han. 2018. Macromolecular response to tectonic deformation in low-rank tectonically deformed coals (TDCs). Fuel 219:279–87. doi:10.1016/j.fuel.2018.01.133.
  • Stracher, G. B., and T. P. Taylor. 2011. Chapter 6-the effects of global coal fires. Coal and Peat Fires: A Global Perspective 1(Coal–Geology and Combustion):101–14.doi:10.1016/B978-0-444-52858-2.00006-2.
  • Zhong, X. X., D. M. Wang, and X. D. Yin. 2010. Test method of coal spontaneous combustion critical temperature based on programmed temperature. Journal of China Coal Society 35 (S1):128–31.
  • Zhuang, L., and J. R. Wang. 2011. The technology of forecasting and predicting the hidden danger of underground coal spontaneous combustion. Procedia Engineering 26:2301–05. doi:10.1016/j.proeng.2011.11.2438.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.