221
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Numerical Simulation on the Influence of Pipe Section Size on Hydrogen Flame Propagation Process in Closed Pipe

, , , , , & show all
Pages 611-625 | Received 04 Jul 2019, Accepted 10 Sep 2019, Published online: 19 Sep 2019

References

  • Bauqens, C. R., and S. B. Dorofeev. 2014. Effect of initial turbulence on vented explosion overpressures from lean hydrogen-air deflagrations[J]. Int. J. Hydrogen Energy 39 (35):20509–15. doi:10.1016/j.ijhydene.2014.04.118.
  • Clanet, C., and S. G. On. 1996. The “tulip flame” phenomenon[J]. Combust. Flame 105 (1–2):226–38. doi:10.1016/0010-2180(95)00195-6.
  • Dun-Rankin, D., and R. F. Sawyer. 1998. Tulip flames: Changes in shape of premixed flames propagating in closed tubes[J]. Exp. Fluids 24 (2):130–40. doi:10.1007/s003480050160.
  • Guo, J., Q. Li, D. D. Chen, K. Hu, K. Shao, C. Guo, and C. Wang. 2015. Effect of burst pressure on vented hydrogen-air explosion in a cylindrical vessel[J]. Int. J. Hydrogen Energy 40 (19):6478–86. doi:10.1016/j.ijhydene.2015.03.059.
  • Kristoffersen, K. 2004. Gas explosions in process pipes[D]. Porsgrunn, Norway: Telemark University College.
  • Lamoureux, N., N. Djebaili-chaumeix, and C. E. Paillard. 2002. Laminar flame velocity determination for H2–Air–He–CO2 mixtures using the spherical bomb method[J]. Exp. Therm. Fluid Sci. 27 (4):385–93. doi:10.1016/S0894-1777(02)00243-1.
  • Li, D., Q. Zhang, Q. J. Ma, and S. Shen. 2015. Comparison of explosion characteristics between hydrogen/air and methane/air at the stoichiometric concentrations[J]. Int. J. Hydrogen Energy 40 (28):8761–68. doi:10.1016/j.ijhydene.2015.05.038.
  • Lilly, D. K. 1992. A proposed modification of the Germano subgrid-scale closure method[J]. Phys. Fluids 4 (4):633–35. doi:10.1063/1.858280.
  • Lowesmith, J., C. Mumby, J. S. Hankinsn, and J. S. Puttock. 2015. Vented confined explosions involving methane/hydrogen mixtures[J]. Int. J. Hydrogen Energy 36 (3):2337–43. doi:10.1016/j.ijhydene.2010.02.084.
  • Lv, X., L. Zheng, Y. Zhang, M. Yu, and Y. Su. 2016. Combined effects of obstacle position and equivalence ratio on overpressure of premixed hydrogen–Air explosion[J]. Int. J. Hydrogen Energy 41 (39):17740–49. doi:10.1016/j.ijhydene.2016.07.263.
  • Rocourt, X., S. Awamat, I. Sochet, and S. Jallais. 2014. Vented hydrogen–Air deflagration in a small enclosed volume[J]. Int. J. Hydrogen Energy 39 (35):20462–66. doi:10.1016/j.ijhydene.2014.03.233.
  • Shirvill, L. C., T. A. Roberts, M. Royle. 2018. Experimental study of hydrogen explosion in repeated pipe congestion – Part 1: Effects of increase in congestion[J]. Int. J. Hydrogen Energy 44 (18):9466–83.
  • Sommerel, O. K., K. Vaagsaether, and D. Bherketvedt. 2017. Hydrogen explosions in 20ʹISO container[J]. Int. J. Hydrogen Energy 42 (11):7740–48. doi:10.1016/j.ijhydene.2016.06.239.
  • Sun, C. H., Y. D. Qu, W. L. Liu. 2018. Effect of ignition conditions on combustion and explosion characteristics of premixed hydrogen/air in closed pipeline[J]. Explo. Shock Waves 38 (3):622–30.
  • Sutherland, W. 1893. LII. The viscosity of gases and molecular force[J]. Philos. Mag. 36:507–31.
  • Xiao, H. H., Q. L. Duan, and J. H. Sun. 2018. Premixed flame propagation in hydrogen explosions[J]. Renewable Sustainable Energy Rev. 81 (2):1988–2001. doi:10.1016/j.rser.2017.06.008.
  • Xiao, H. H., X. B. Shen, and J. H. Sun. 2012. Experimental study and three-dimensional simulation of premixed hydrogen/air flame propagation in a closed duct[J]. Int. J. Hydrogen Energy 37 (15):11466–73. doi:10.1016/j.ijhydene.2012.05.006.
  • Yakhot, V., and S. A. Orszag. 1986. Renormalization group analysis of turbulence 1—Basic Theory[J]. J. Sci. Comput. 1 (1):3–51. doi:10.1007/BF01061452.
  • Yu, M. G., K. Zheng, L. G. Zheng, et al. 2015. Effects of hydrogen addition on propagation characteristics of premixed methane/air flames [J]. J. Loss Prev. Process Ind. 34:1–9.
  • Zhang, Q., L. Pang, and H. M. Liang. 2011. Comparison of explosion characteristics between hydrogen/air and methane/air at the stoichiometric concentrations[J]. J. Loss Prev. Process Ind. 24 (1):43–48. doi:10.1016/j.jlp.2010.08.011.
  • Zhang, X., T. Wang, X. S. Hou. 2016. Interaction between turbule and flame surface in low calorific value gas engine[J]. J. Intern. Combust. Engine 34 (6):537–42.
  • Zhang, P. L., J. Wang, and J. J. Liang. 2019. Explosions of gasoline vapor/air mixture in closed vessels with different shapes and sizes[J]. J. Loss Prev. Process Ind. 57:327–34. doi:10.1016/j.jlp.2018.12.010.
  • Zheng, K., M. G. Yu, L. Zheng, X. Wen, T. Chu, and L. Wang. 2017. Experimental study on premixed flame propagation of hydrogen/methane/air deflagration in closed ducts[J]. Int. J. Hydrogen Energy 42 (8):5426–38. doi:10.1016/j.ijhydene.2016.10.106.
  • Zheng, K., M. G. Yu, L. G. Zheng, and X. Wen. 2018. Comparative study of the propagation of methane/air and hydrogen/air flames in a duct using large eddy simulation[J]. Process Saf. Environ. Prot. 120:45–56. doi:10.1016/j.psep.2018.08.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.