504
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Effects of Water Vapor Addition on the Flame Structure and Soot Formation in a Laminar Ethanol/air Coflow Flame

ORCID Icon, , , , &
Pages 626-642 | Received 29 Jul 2019, Accepted 10 Sep 2019, Published online: 16 Sep 2019

References

  • Andrae, J. C. G. 2008. Development of a detailed kinetic model for gasoline surrogate fuels. Fuel 87 (10):2013–22. doi:10.1016/j.fuel.2007.09.010.
  • Arabaci, E., Y. İçingür, H. Solmaz, A. Uyumaz, and E. Yilmaz. 2015. Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine. Energy Convers Manage 98:89–97. doi:10.1016/j.enconman.2015.03.045.
  • Barfknecht, T. R. 1983. Toxicology of soot. Prog Energy Combust Sci 9 (3):199–237. doi:10.1016/0360-1285(83)90002-3.
  • Choi, M. Y., G. W. Mulholland, A. Hamins, and T. Kashiwagi. 1995. Comparisons of the soot volume fraction using gravimetric and light extinction techniques. Combust Flame 102 (1–2):161–69. doi:10.1016/0010-2180(94)00282-W.
  • Choi, S., C. L. Myung, and S. Park. 2014. Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 2. Int J Automot Technol 15 (2):219–27. doi:10.1007/s12239-014-0023-9.
  • Cordier, M., M. Lecompte, L.-M. Malbec, B. Reveille, C. Servant, F. Souidi, and N. Torcolini. 2019. Water injection to improve direct injection spark ignition engine efficiency. SAE Tech. Paper, 2019-01-1139. WCX SAE World Congress Experience, Detroit, MI. doi:10.4271/2019-01-1139.
  • Costa, R. C., and J. R. Sodré. 2010. Hydrous ethanol vs. gasoline-ethanol blend: Engine performance and emissions. Fuel 89 (2):287–93. doi:10.1016/j.fuel.2009.06.017.
  • Eaves, N. A., Q. Zhang, F. Liu, H. Guo, S. B. Dworkin, and M. J. Thomson. 2016. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames. Comput Phys Commun 207:464–77. doi:10.1016/j.cpc.2016.06.016.
  • Gu, M., H. Chu, and F. Liu. 2016. Effects of simultaneous hydrogen enrichment and carbon dioxide dilution of fuel on soot formation in an axisymmetric coflow laminar ethylene/air diffusion flame. Combust Flame 166:216–28. doi:10.1016/j.combustflame.2016.01.023.
  • Gülder, Ö. L., D. R. Snelling, and R. A. Sawchuk. 1996. Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames. Symp (Int) Combust 26 (2):2351–58. doi:10.1016/S0082-0784(96)80064-6.
  • Guo, H., F. Liu, G. J. Smallwood, and Ö. L. Gülder. 2006. Numerical study on the influence of hydrogen addition on soot formation in a laminar ethylene–air diffusion flame. Combust Flame 145 (1–2):324–38. doi:10.1016/j.combustflame.2005.10.016.
  • He, B., S. Shuai, J. Wang, and H. He. 2003. The effect of ethanol blended diesel fuels on emissions from a diesel engine. Atmos Environ 37 (35):4965–71. doi:10.1016/j.atmosenv.2003.08.029.
  • Iacobacci, A., L. Marchitto, and G. Valentino. 2017. Water injection to enhance performance and emissions of a turbocharged gasoline engine under high load condition. SAE Int J Engines 10:928–37. doi:10.4271/2017-01-0660.
  • Jacobson, M. Z. 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409 (6821):695–97. doi:10.1038/35055518.
  • Kee, R. J., F. M. Rupley, E. Meeks, and J. A. Miller. 1996. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. Sandia National Laboratory, Livermore, CA. Technical Report SAND96-8216.
  • Khosousi, A., F. Liu, S. B. Dworkin, N. A. Eaves, M. J. Thomson, X. He, Y. Dai, Y. Gao, F. Liu, S. Shuai, et al. 2015. Experimental and numerical study of soot formation in laminar coflow diffusion flames of gasoline/ethanol blends. Combust Flame 162 (10):3925–33. doi:10.1016/j.combustflame.2015.07.029.
  • Koç, M., Y. Sekmen, T. Topgül, and H. S. Yücesu. 2009. The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine. Renewable Energy 34 (10):2101–06. doi:10.1016/j.renene.2009.01.018.
  • Liu, F., J.-L. Consalvi, and A. Fuentes. 2014. Effects of water vapor addition to the air stream on soot formation and flame properties in a laminar coflow ethylene/air diffusion flame. Combust Flame 161 (7):1724–34. doi:10.1016/j.combustflame.2013.12.017.
  • Liu, F., Y. Ai, and W. Kong. 2014. Effect of hydrogen and helium addition to fuel on soot formation in an axisymmetric coflow laminar methane/air diffusion flame. Int J Hydrogen Energy 39 (8):3936–46. doi:10.1016/j.ijhydene.2013.12.151.
  • Lutz, A. E., R. J. Kee, and J. A. Miller. 1988. SENKIN: A FORTRAN program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. Sandia National Laboratory, Livermore, CA. Technical Report SAND87-8248.
  • Lutz, A. E., R. J. Kee, J. F. Grcar, and F. M. Rupley. 1997. OPPDIF: A Fortran program for computing opposed-flow diffusion flames. Sandia National Laboratory, Livermore, CA. Technical Report SAND 96-8243.
  • Mahmoud, N. M., F. Yan, M. Zhou, L. Xu, and Y. Wang. 2019. Coupled effects of carbon dioxide and water vapor addition on soot formation in ethylene diffusion flames. Energy Fuels 33 (6):5582–96. doi:10.1021/acs.energyfuels.9b00192.
  • Myung, C. L., and S. Park. 2012. Exhaust nanoparticle emissions from internal combustion engines: A review. Int J Automot Technol 12 (1):9–22. doi:10.1007/s12239-012-0002-y.
  • Natarajan, K., and K. A. Bhaskaran. 1982. High temperature combustion kinetics of ethanol. Thirteenth International Symposium on Shock Waves. Niagara Falls, NY. 834–42.
  • Pitz, W. J., and C. J. Mueller. 2011. Recent progress in the development of diesel surrogate fuels. Prog Energy Combust Sci 37 (3):330–50. doi:10.1016/j.pecs.2010.06.004.
  • Qiu, L., X. Cheng, X. Wang, Z. Li, Y. Li, Z. Wang, and H. Wu. 2016. Development of a reduced n-decane/α-methylnaphthalene/polycyclic aromatic hydrocarbon mechanism and its application for combustion and soot prediction. Energy Fuels 30 (12):10875–85. doi:10.1021/acs.energyfuels.6b02186.
  • Qiu, L., X. Cheng, Z. Li, and H. Wu. 2018. Experimental and numerical investigation on soot volume fractions and number densities in non-smoking laminar n-heptane/n-butanol coflow flames. Combust Flame 191:394–407. doi:10.1016/j.combustflame.2018.01.024.
  • Sarathy, S. M., A. Farooq, and G. T. Kalghatgi. 2018. Recent progress in gasoline surrogate fuels. Prog Energy Combust Sci 65:67–108. doi:10.1016/j.pecs.2017.09.004.
  • Saxena, P., and F. A. Williams. 2007. Numerical and experimental studies of ethanol flames. Proc Combust Inst 31 (1):1149–56. doi:10.1016/j.proci.2006.08.097.
  • Singh, P. K., A. S. Ramadhas, R. Mathai, and A. K. Sehgal. 2016. Investigation on combustion, performance and emissions of automotive engine fueled with ethanol blended gasoline. SAE Int J Fuels Lubr 9:215–23. doi:10.4271/2016-01-0886.
  • Wang, Y., and S. H. Chung. 2016. Formation of soot in counterflow diffusion flames with carbon dioxide dilution. Combust Sci Technol 188 (4–5):805–17. doi:10.1080/00102202.2016.1139388.
  • Wichmann, H. E., C. Spix, T. Tuch, G. Wölke, A. Peters, J. Heinrich, W. G. Kreyling, and J. Heyder. 2000. Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: Role of particle number and particle mass. Res Rep Health Eff Inst 98:5–86.
  • Wu, Y., F. Liu, Y. Sun, and B. Zhu. 2019. Effects of carbon dioxide and water vapor addition on benzene and PAH formation in a laminar premixed CH4/O2/Ar flame. Combust Sci Technol 191 (10):1866–97. doi:10.1080/00102202.2018.1536881.
  • Xu, H., F. Liu, S. Sun, Y. Zhao, S. Meng, and W. Tang. 2017. Effects of H2O and CO2 diluted oxidizer on the structure and shape of laminar coflow syngas diffusion flames. Combust Flame 177:67–78. doi:10.1016/j.combustflame.2016.12.001.
  • Zhang, Q., M. J. Thomson, H. Guo, F. Liu, and G. J. Smallwood. 2009. A numerical study of soot aggregate formation in a laminar coflow diffusion flame. Combust Flame 156 (3):697–705. doi:10.1016/j.combustflame.2008.10.022.
  • Zhu, L., J. Yu, and X. Wang. 2007. Oxidation treatment of diesel soot particulate on CexZr1−xO2. J Hazard Mater 140 (1):205–10. doi:10.1016/j.jhazmat.2006.06.055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.