576
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Mechanical Properties of Soot Particles: The Impact of Crosslinked Polycyclic Aromatic Hydrocarbons

, , , , &
Pages 643-663 | Received 17 Jun 2019, Accepted 12 Sep 2019, Published online: 30 Sep 2019

References

  • Alfè, M., B. Apicella, A. Tregrossi, and A. Ciajolo. 2008. Identification of large polycyclic aromatic hydrocarbons in carbon particulates formed in a fuel-rich premixed ethylene flame. Carbon 46 (15):2059–66. doi:10.1016/j.carbon.2008.08.019.
  • Alfè, M., B. Apicella, J. Rouzaud, A. Tregrossi, and A. Ciajolo. 2010. The effect of temperature on soot properties in premixed methane flames. Combust. Flame 157:1959–65. doi:10.1016/j.combustflame.2010.02.007.
  • Alfè, M., B. Apicella, R. Barbella, J. Rouzaud, A. Tregrossi, and A. Ciajolo. 2009. Structure–property relationship in nanostructures of young and mature soot in premixed flames. Proc. Combust. Inst. 32:697–704. doi:10.1016/j.proci.2008.06.193.
  • Apicella, B., P. Pré, M. Alfè, A. Ciajolo, V. Gargiulo, C. Russo, A. Tregrossi, D. Deldique, and J. N. Rouzaud. 2015. Soot nanostructure evolution in premixed flames by High Resolution Electron Transmission Microscopy (HRTEM). Proc. Combust. Inst. 35 (2):1895–902. doi:10.1016/j.proci.2014.06.121.
  • Bhowmick, H., and S. K. Biswas. 2011. Relationship between physical structure and tribology of single soot particles generated by burning ethylene. Tribol Lett 44 (2):139–49. doi:10.1007/s11249-011-9831-5.
  • Bhowmick, H., S. K. Majumdar, and S. K. Biswas. 2011. Dry tribology and nanomechanics of gaseous flame soot in comparison with carbon black and diesel soot. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 226 (2):394–402.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. Deangelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118 (11):5380–552.
  • Botero, M. L., D. Chen, S. González-Calera, D. Jefferson, and M. Kraft. 2016. HRTEM evaluation of soot particles produced by the non-premixed combustion of liquid fuels. Carbon 96:459–73. doi:10.1016/j.carbon.2015.09.077.
  • Brenner, D. W., O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott. 2002. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J.Phys. Condens. Matter 14 (4):783–802.
  • Buseck, P. R., B. Huang, and L. P. Keller. 1987. Electron microscope investigation of the structures of annealed carbons. Energy Fuels 1 (1):105–10. doi:10.1021/ef00001a020.
  • Chang, L., C.-Y. Zhou, -L.-L. Wen, J. Li, and X. H. He. 2017. Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire. Com Put. Mater. Sci. 128:348–58. doi:10.1016/j.commatsci.2016.11.034.
  • Chung, S.-H., and A. Violi. 2011. Peri–Condensed aromatics with aliphatic chains as key intermediates for the nucleation of aromatic hydrocarbons. Proc. Combust. Inst. 33 (1):693–700. doi:10.1016/j.proci.2010.06.038.
  • Ciajolo, A., B. Apicella, R. Barbella, and A. Tregrossi. 2000. Correlations of the spectroscopic properties with the chemical composition of flame–formed aromatic mixtures. Combust. Sci. Technol. 153:19–32. doi:10.1080/00102200008947248.
  • Commodo, M., G. De Falco, A. Bruno, C. Borriello, P. Minutolo, and A. D’Anna. 2015. Physicochemical evolution of nascent soot particles in a laminar premixed flame: From nucleation to early growth. Combust. Flame 162 (10):3854–63. doi:10.1016/j.combustflame.2015.07.022.
  • Commodo, M., K. Kaiser, G. De Falco, P. Minutolo, F. Shultz, A. D’Anna, and L. Gross. 2019. On the early stages of soot formation: Molecular structure elucidation by high-resolution atomic force microscopy. Combust. Flame 205:154–64. doi:10.1016/j.combustflame.2019.03.042.
  • D’Anna, A. 2009. Combustion–formed nanoparticles. Proc. Combust. Inst. 32:593–613. doi:10.1016/j.proci.2008.09.005.
  • D’Anna, A., A. Violi, A. D’Alessio, and A. F. Sarofim. 2001. A reaction pathway for nanoparticle formation in rich premixed flames. Combust. Flame 127 (1–2):1995–2003. doi:10.1016/S0010-2180(01)00303-0.
  • Dastanpour, R., A. Momenimovahed, K. Thomson, J. Olfert, and S. Rogak. 2017. Variation of the optical properties of soot as a function of particle mass. Carbon 124:201–11. doi:10.1016/j.carbon.2017.07.005.
  • de Tomas, C., I. Suarez-Martinez, and N. A. Marks. 2018. Carbide-derived carbons for dense and tunable 3D graphene networks. Appl Phys Lett 112 (25):251907. doi:10.1063/1.5030136.
  • Dobbins, R. A., R. A. Fletcher, and H.-C. Chang. 1998. The evolution of soot precursor particles in a diffusion flame. Combust. Flame 115 (3):285–98. doi:10.1016/S0010-2180(98)00010-8.
  • Donnet, J., J. Schultz, and A. Eckhardt. 1968. Etude de la microstructure d’un noir de carbone thermique. Carbon 6 (6):781–88. doi:10.1016/0008-6223(68)90064-X.
  • Elvati, P., and A. Violi. 2013. Thermodynamics of poly-aromatic hydrocarbon clustering and the effects of substituted aliphatic chains. Proc. Combust. Inst. 34 (1):1837–43. doi:10.1016/j.proci.2012.07.030.
  • Elvati, P., and A. Violi. 2018. Homo–Dimerization of oxygenated polycyclic aromatic hydrocarbons under flame conditions. Fuel 222:307–11. doi:10.1016/j.fuel.2018.02.095.
  • Fan, X., K. Nose, D. Diao, and T. Yoshida. 2013. Nanoindentation behaviors of amorphous carbon films containing nanocrystalline graphite and diamond clusters prepared by radio frequency sputtering. Appl Surf Sci 273:816––823. doi:10.1016/j.apsusc.2013.03.012.
  • Flores, A., F. J. B. Calleja, G. E. Attenburrow, and D. C. Bassett. 2000. Microhardness studies of chain-extended pe: Iii. correlation with yield stress and elastic modulus. Polymer 41 (14):5431–35. doi:10.1016/S0032-3861(99)00755-7.
  • Frenklach, M. 2002. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 4 (11):2028–37. doi:10.1039/b110045a.
  • Frenklach, M., and H. Wang. 1991. Detailed modeling of soot particle nucleation and growth. Symp. (Int.) Combust. 23 (1):1559–66. doi:10.1016/S0082-0784(06)80426-1.
  • Heckman, F. A., and D. F. Harling. 1966. Progressive oxidation of selected particles of carbon black: Further evidence for a new microstructural model. Rubber Chem. Technol. 39 (1):1–13. doi:10.5254/1.3544829.
  • Heidenreich, R. D., W. M. Hess, and L. L. Ban. 1968. A test object and criteria for high resolution electron microscopy. J Appl Crystallogr 1 (1):1–19. doi:10.1107/S0021889868004930.
  • Herdman, J. D., and J. H. Miller. 2008. Intermolecular potential calculations for polynuclear aromatic hydrocarbon clusters. J. Phys. Chem. A 112 (28):6249–56. doi:10.1021/jp800483h.
  • Homann, K.-H. 1998. Fullerenes and soot formation – new pathways to large particles in flames. Angew. Chem. Int. Ed. 37 (18):2434–51. doi:10.1002/(ISSN)1521-3773.
  • Iavarone, S., L. Pascazio, M. Sirignano, A. De Candia, A. Fierro, L. de Arcangelis, and A. D’Anna. 2017. Molecular dynamics simulations of incipient carbonaceous nanoparticle formation at flame conditions. Combust. Theor. Model. 21 (1):49–61. doi:10.1080/13647830.2016.1242156.
  • Ishiguro, T., Y. Takatori, and K. Akihama. 1997. Microstructure of diesel soot particles probed by electron microscopy: First observation of inner core and outer shell. Combust. Flame 108 (1–2):231–34. doi:10.1016/S0010-2180(96)00206-4.
  • Iwashita, N., and M. V. Swain. 2002. Elasto-plastic deformation of glassy carbon by nanoindentation with spherical tipped indenters. Mol. Cryst. Liq. Cryst. 386:39–44. doi:10.1080/713738820.
  • Jenei, I. Z., F. Dassenoy, T. Epicier, A. Khajeh, A. Martini, D. Uy, H. Ghaednia, and A. Gangopadhyay. 2018. Mechanical characterization of diesel soot nanoparticles: In situ compression in a transmission electron microscope and simulations. Nanotechnology 29:085703. doi:10.1088/1361-6528/aaa2aa.
  • Kholghy, M. R., A. Veshkini, and M. J. Thomson. 2016. The core-shell internal nanostructure of soot – a criterion to model soot maturity. Carbon 100:508–36. doi:10.1016/j.carbon.2016.01.022.
  • Landrigan, P. J., R. Fuller, N. J. R. Acosta, O. Adeyi, R. Arnold, N. N. Basu, ... M. Zhong. The Lancet Commission on pollution and health. Lancet. 391 (10119):462–512. doi:10.1016/S0140-6736(17)32345-0.
  • Lewis, I. C. 1980. Thermal polymerization of aromatic hydrocarbons. Carbon 18 (3):191–96. doi:10.1016/0008-6223(80)90060-3.
  • Li, Z., O. Zabihi, J. Wang, Q. Li, J. Wang, W. Lei, and M. Naebe. 2017. Hydrophilic pan based carbon nanofibres with improved graphitic structure and enhanced mechanical performance using ethylenediamine functionalized graphene. RSC Adv 7:2621–28. doi:10.1039/C6RA24719A.
  • Mao, Q., D. Hou, K. H. Luo, and X. You. 2018. Dimerization of polycyclic aromatic hydrocarbon molecules and radicals under flame conditions. J. Phys. Chem. A 122:8701−8708. doi:10.1021/acs.jpca.8b07102.
  • Mao, Q., A. C. T. van Duin, and K. H. Luo. 2017. Formation of incipient soot particles from polycyclic aromatic hydrocarbons: A ReaxFF molecular dynamics study. Carbon 121:380–88. doi:10.1016/j.carbon.2017.06.009.
  • Martinez, L., R. Andrade, E. G. Birgin, and J. M. Martínez. 2009. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J Comput Chem 30 (13):2157–64. doi:10.1002/jcc.21224.
  • Martyna, G. J., M. L. Klein, and M. Tuckerman. 1992. Nosè–Hoover chains: The canonical ensemble via continuous dynamics. J Chem Phys 97 (4):2635–43. doi:10.1063/1.463940.
  • McConnell, J. R., R. Edwards, G. L. Kok, M. G. Flanner, C. S. Zender, E. S. Saltzman, J. R. Banta, D. R. Pasteris, M. M. Carter, and J. D. W. Kahl. 2007. 20th-century industrial black carbon emissions altered arctic climate forcing. Science 317 (5843):1381–84. doi:10.1126/science.1144856.
  • Miller, J. H., J. D. Herdman, C. D. O. Green, and E. M. Webster. 2013. Experimental and computational determinations of optical band gaps for PAH and soot in a N2-diluted, ethylene/air non-premixed flame. Proc. Combust. Inst. 34 (2):3669–75. doi:10.1016/j.proci.2012.05.054.
  • Minutolo, P., G. Gambi, and A. D’Alessio. 1996. The optical band gap model in the interpretation of the UV-visible absorption spectra of rich premixed flames. Symp. (Int.) Combust. 26 (1):951–57. doi:10.1016/S0082-0784(96)80307-9.
  • Mitsuhashi, K., S. Ghosh, and H. Koibuchi. 2018. Mathematical modeling and simulations for large-strain j-shaped diagrams of soft biological materials. Polymers 10:715. doi:10.3390/polym10070715.
  • O’Connor, T. C., J. Andzelm, and M. O. Robbins. 2015. AIREBO-M: A reactive model for hydrocarbons at extreme pressures. J Chem Phys 142 (2):024903. doi:10.1063/1.4905549.
  • Parrinello, M., and A. Rahman. 1981. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys 52:7182–90. doi:10.1063/1.328693.
  • Pascazio, L., M. Sirignano, and A. D'Anna. 2017. Simulating the morphology of clusters of polycyclic aromatic hydrocarbons: The influence of the intermolecular potential. Combust. Flame 185:53–62. doi:10.1016/j.combustflame.2017.07.003.
  • Patterson, J. R., S. A. Catledge, Y. K. Vohra, J. Akella, and S. T. Weir. 2000. Electrical and mechanical properties of C70 fullerene and graphite under high pressures studied using designer diamond anvils. Phys. Rev. Lett. 85 (25):5364–67. doi:10.1103/PhysRevLett.85.5364.
  • Plimpton, S. 1995. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117 (1):1–19. doi:10.1006/jcph.1995.1039.
  • Qomi, M. J. A., D. Ebrahimi, M. Bauchy, R. Pellenq, and F.-J. Ulm. 2017. Methodology for estimation of nanoscale hardness via atomistic simulations. J. Nanomech. Micromech. 7 (4):04017011. doi:10.1061/(ASCE)NM.2153-5477.0000127.
  • Ranganathan, R., S. Rokkam, T. Desai, and P. Keblinski. 2017. Generation of amorphous carbon models using liquid quench method: A reactive molecular dynamics study. Carbon 113:87–99. doi:10.1016/j.carbon.2016.11.024.
  • Rapacioli, M., F. Calvo, F. Spiegelman, C. Joblin, and D. J. Wales. 2005. Stacked clus- ters of polycyclic aromatic hydrocarbon molecules. J. Phys. Chem. A 109 (11):2487–97. doi:10.1021/jp0407472.
  • Richter, A., R. Riesa, R. Smith, M. Henkel, and B. Wolf. 2000. Nanoindentation of diamond, graphite and fullerene films. Diam Relat Mater 9:170–84. doi:10.1016/S0925-9635(00)00188-6.
  • Russo, C., A. Tregrossi, and A. Ciajolo. 2015. Dehydrogenation and growth of soot in premixed flames. Proc. Combust. Inst. 35:1803–09. doi:10.1016/j.proci.2014.05.024.
  • Russo, C., M. Alfè, J. N. Rouzaud, F. Stanzione, A. Tregrossi, and A. Ciajolo. 2013. Probing structures of soot formed in premixed flames of methane, ethylene and benzene. Proc. Combust. Inst. 34 (1):1885–92. doi:10.1016/j.proci.2012.06.127.
  • Schuetz, C., and M. Frenklach. 2002. Nucleation of soot: Molecular dynamics simulations of pyrene dimerization. Proc. Combust. Inst. 29:2307–13. doi:10.1016/S1540-7489(02)80281-4.
  • Sediako, A. D., C. Soong, J. Y. Howe, M. R. Kholghy, and M. J. Thomson. 2017. Real- time observation of soot aggregate oxidation in an environmental transmission electron microscope. Proc. Combust. Inst. 36 (1):841–51. doi:10.1016/j.proci.2016.07.048.
  • Shahini, E., K. K. Taheri, and A. K. Taheri. 2017. An investigation on tensile properties of coiled carbon nanotubes using molecular dynamics simulation. Diam Relat Mater 74:154–63. doi:10.1016/j.diamond.2017.02.023.
  • Stuart, S. J., A. B. Tutein, and J. A. Harrison. 2000. A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112 (14):6472–86. doi:10.1063/1.481208.
  • Sweitzer, C. W., and G. L. Heller. 1956. The formation of carbon black in hydrocarbon flames. Rubber World 134:855.
  • Tabor, D. 1951. The hardness of metals. Clarendon Press, Oxford, UK.
  • Takano, Y., and H. Koibuchi. 2017. J-shaped stress-strain diagram of collagen fibers: Frame tension of triangulated surfaces with fixed boundaries. Phys. Rev. E 95:042411. doi:10.1103/PhysRevE.95.032145.
  • Talyzin, A. V., S. M. Luzan, K. Leifer, S. Akhtar, J. Fetzer, F. Cataldo, Y. O. Tsybin, C. W. Tai, A. Dzwilewski, and E. Moons. 2011. Coronene fusion by heat treatment: Road to nanographenes. J. Phys. Chem. C 115 (27):13207–14. doi:10.1021/jp2028627.
  • Thompson, M. W., B. Dyatkin, H. W. Wang, C. H. Turner, X. Sang, R. R. Unocic, C. Iacovella, Y. Gogotsi, A. van Duin, and P. Cummings. 2017. An atomistic carbide-derived carbon model generated using ReaxFF-based quenched molecular dynamics. C 4 (3):32.
  • Totton, T. S., A. J. Misquitta, and M. Kraft. 2012. A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures. Phys. Chem. Chem. Phys. 14 (12):4081–94. doi:10.1039/c2cp23008a.
  • Totton, T. S., D. Chakrabarti, A. J. Misquitta, M. Sander, D. J. Wales, and L. Kraft. 2010. Modelling the internal structure of nascent soot particles. Combust. Flame 157 (5):909–14. doi:10.1016/j.combustflame.2009.11.013.
  • Tregrossi, A., and A. Ciajolo. 2010. Spectral signatures of carbon particulate evolution in methane flames. Combust. Sci. Technol. 182 (4–6):683–91. doi:10.1080/00102200903466517.
  • Unterreiner, B. V., M. Sierka, and R. Ahlrichs. 2004. Reaction pathways for growth of polycyclic aromatic hydrocarbons under combustion conditions, a DFT study. Phys. Chem. Chem. Phys. 6 (18):4377–84. doi:10.1039/b407279k.
  • Violi, A., A. Kubota, T. Truong, W. Pitz, C. Westbrook, and A. Sarofim. 2002. A fully integrated kinetic monte carlo/molecular dynamics approach for the simulation of soot precursor growth. Proc. Combust. Inst. 29 (2):2343–49. doi:10.1016/S1540-7489(02)80285-1.
  • Violi, A., A. F. Sarofim, and G. A. Voth. 2004. Kinetic Monte Carlo-molecular dynamics approach to model soot inception. Combust. Sci. Technol. 176 (5–6):991–1005. doi:10.1080/00102200490428594.
  • Wang, H. 2011. Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst. 33 (1):41–67. doi:10.1016/j.proci.2010.09.009.
  • Zhang, F., and J. Zhou. 2018. Molecular dynamics study of bimodal nanotwinned cu with a composite structure. Comput. Mater. Sci. 145:60–67. doi:10.1016/j.commatsci.2017.12.060.
  • Zhang, H. B., X. You, H. Wang, and C. K. Law. 2014. Dimerization of polycyclic aromatic hydrocarbons in soot nucleation. J. Phys. Chem. A 118 (8):1287–92. doi:10.1021/jp411806q.
  • Zhao, B., K. Uchikawa, and H. Wang. 2007. A comparative study of nanoparticles in premixed flames by scanning mobility particle sizer, small angle neutron scattering, and transmission electron microscopy. Proc. Combust. Inst. 31:851–60. doi:10.1016/j.proci.2006.08.064.
  • Zickler, G. A., T. Schöberl, and O. Paris. 2006. Mechanical properties of pyrolysed wood: A nanoindentation study. Philos. Mag. 86 (10):1373–86. doi:10.1080/14786430500431390.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.