326
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Experimental Study on Pore-fracture Evolution Law in the Thermal Damage Process of Coal

, , &
Pages 677-701 | Received 19 Mar 2019, Accepted 14 Sep 2019, Published online: 26 Sep 2019

References

  • Cai, Y., D. Liu, Z. Pan, Y. Yao, J. Li, and Y. Qiu. 2013. Petrophysical characterization of Chinese coal cores with heat treatment by nuclear magnetic resonance. FUEL 108:292–302. doi:10.1016/j.fuel.2013.02.031.
  • Chao-mo, Z., C. Zhen-biao, Z. Zhan-song. 2007. Fractal characteristics of reservoir rock pore structure based on NMR T2 distribution. J. Oil Gas Technol. 29 (4):80–86.
  • Connell, L. D. 2009. Coupled flow and geomechanical processes during gas production from coal seams. Int. J. Coal Geol. 79 (1–2):18–28. doi:10.1016/j.coal.2009.03.008.
  • Gan, H., and S. P. P. L. W. Nandi Jr. 1972. Nature of the porosity in American coals. FUEL 51 (4):272–77. doi:10.1016/0016-2361(72)90003-8.
  • GB/T 15588-2013. 2013. Classification of macerals for bituminous coal. Beijing: Standards Press of China, pp. 1–7 (in Chinese).
  • Hu, J., and P. Stroeven. 2005. Local porosity analysis of pore structure in cement paste. Cem. Concr. Res. 35 (2):233–42. doi:10.1016/j.cemconres.2004.06.018.
  • ISO7404-5,2009. 2009. Methods for the petrographic analysis of coals – part 5: Methods of determining microscopically the reflectance of vitrinite. International Organization for Standardization, Geneva, Switzerland..
  • Jiang, B., B. Lin, H. Wu. 2010. Structural characteristics and fractal laws research in coal and rock ultrafine pore. J. Hunan Univ. Sci. Technol.: 25 (3):17–20. doi:10.3969/j.issn.1672-9102.2010.03.005.
  • Ke-ping, Z., L. I. Jie-lin, X. U. Yu-juan. 2012. Measurement of rock pore structure based on NMR technology. J. Cent. South Univ. 43 (12):4796–800.
  • Kong, B., Z. Li, E. Wang, W. Lu, L. Chen, and G. Qi. 2018. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique. Process Saf. Environ. Prot. 119:285–94. doi:10.1016/j.psep.2018.08.002.
  • Kong, B., Z. Li, Y. Yang, Z. Liu, and D. Yan. 2017. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Environ. Sci. Pollut. Res. 24 (30):23453–70. doi:10.1007/s11356-017-0209-6.
  • Li, H., B. Lin, Z. Chen, Y. Hong, and C. Zheng. 2017. Evolution of coal petrophysical properties under microwave irradiation stimulation for different water saturation conditions. Energy Fuels 31 (9):8852–64. doi:10.1021/acs.energyfuels.7b00553.
  • Li, H., B. Lin, W. Yang, C. Zheng, Y. Hong, Y. Gao, T. Liu, and S. Wu. 2016. Experimental study on the petrophysical variation of different rank coals with microwave treatment. Int. J. Coal Geol. 154:82–91. doi:10.1016/j.coal.2015.12.010.
  • Li, J., Z. Li, Y. Yang, and C. Wang. 2018. Study on oxidation and gas release of active sites after low-temperature pyrolysis of coal. FUEL 233:237–46. doi:10.1016/j.fuel.2018.06.039.
  • Li, J., Z. Li, Y. Yang, and X. Zhang. 2019. Study on the generation of active sites during low-temperature pyrolysis of coal and its influence on coal spontaneous combustion. Fuel 241:283–96. doi:10.1016/j.fuel.2018.12.034.
  • Li, S., D. Tang, H. Xu, and Z. Yang. 2012. Advanced characterization of physical properties of coals with different coal structures by nuclear magnetic resonance and X-ray computed tomography. Comput. Geosci. 48:220–27. doi:10.1016/j.cageo.2012.01.004.
  • Liu, J., Z. Chen, D. Elsworth, H. Qu, and D. Chen. 2011. Interactions of multiple processes during CBM extraction: A critical review. Int. J. Coal Geol. 87 (3–4):175–89. doi:10.1016/j.coal.2011.06.004.
  • Cutmore, N G., B.D. Sowerby, L. J. Lynch, and D. S. Webster. 1986. Determination of moisture in black coal using pulsed nuclear magnetic resonance spectrometry. Fuel 65 (1):34–39. doi:10.1016/0016-2361(86)90138-9.
  • O’Brien, G., Y. Gu, B.J.I. Adair, and B. Firth. 2011. The use of optical reflected light and SEM imaging systems to provide quantitative coal characterisation. Miner. Eng. 24 (12SI):1299–304. doi:10.1016/j.mineng.2011.04.024.
  • Prammer, M. G. 2004. NMR in well logging and hydrocarbon exploration. Appl Magn Reson 25 (3–4):637–49. doi:10.1007/BF03166554.
  • Qi, H. 1987. On morphological character and origin of micropores in coal. J. China Coal Soc. (004):51–56, 97–101. doi:10.13225/j.cnki.jccs.1987.04.006.
  • Qiaorong, M., Z. Yangsheng, Y.U. Yanmei. 2010. Micro-CT experimental study of crack evolution of lignite under different temperatures. Chin. J. Rock Mech. Eng. 29 (12):2475–83.
  • Kleinberg, R.L., and H. J. Vinegar. 1996. NMR properties of reservoir fluids. Log Analyst 37 (6):20–32.
  • Rieu, M., and G. Sposito. 1991. Fractal fragmentation, soil porosity, and soil water properties: I. theory. Soil Sci. Soc. Am. J. 55 (5):1239–44. doi:10.2136/sssaj1991.03615995005500050007x.
  • Ide, S.T., and F. M. Orr. 2011. Comparison of methods to estimate the rate of CO2 emissions and coal consumption from a coal fire near Durango, CO. Int. J. Coal Geol. 86 (1SI):95–107. doi:10.1016/j.coal.2010.12.005.
  • Si, L., Z. Li, and Y. Yang. 2019. Evolution characteristics of gas permeability under multiple factors. Transp. Porous Media 127 (2):415–32. doi:10.1007/s11242-018-1199-7.
  • Si Leilei, L. Z. M. K. 2019. The influence of closed pores on the gas transport and its application in coal mine gas extraction. Fuel. doi:10.1016/j.fuel.2019.06.013.
  • Song-tao, B., W. Jin-bin, C. Dao-jie. 2014. Study of relationship between petrophysical experimental parameters: Capillarypressure,NMRτ2 distribution, resistivity index,relative permeability. J. Chengdu Univ. Technol. 41 (4):483–91. doi:10.3969/j.issn.1671-9727.2014.04.11.
  • Tang, Y., X. Zhong, G. Li, Z. Yang, and G. Shi. 2019. Simulation of dynamic temperature evolution in an underground coal fire area based on an optimised thermal-hydraulic-chemical model. Combust. Theor. Model. 23 (1):127–46. doi:10.1080/13647830.2018.1492742.
  • Wang, K., J. Zang, G. Wang, and A. Zhou. 2014. Anisotropic permeability evolution of coal with effective stress variation and gas sorption: Model development and analysis. Int. J. Coal Geol. 130:53–65. doi:10.1016/j.coal.2014.05.006.
  • Wessling, S., W. Kessels, M. Schmidt, and U. Krause. 2008. Investigating dynamic underground coal fires by means of numerical simulation. Geophys. J. Int. 172 (1):439–54. doi:10.1111/gji.2008.172.issue-1.
  • Xia, W., J. Yang, and C. Liang. 2014. Investigation of changes in surface properties of bituminous coal during natural weathering processes by XPS and SEM. Appl. Surf. Sci. 293:293–98. doi:10.1016/j.apsusc.2013.12.151.
  • Yang, Y., Z. Li, L. Si, S. Hou, Z. Li, and J. Li. 2018. Study on test method of heat release intensity and thermophysical parameters of loose coal. FUEL 229:34–43. doi:10.1016/j.fuel.2018.05.006.
  • Yao, Y., D. Liu, Y. Che, D. Tang, S. Tang, and W. Huang. 2010. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel 89 (7):1371–80. doi:10.1016/j.fuel.2009.11.005.
  • Yao, Y., D. Liu, and S. Xie. 2014. Quantitative characterization of methane adsorption on coal using a low-field NMR relaxation method. Int. J. Coal Geol. 131:32–40. doi:10.1016/j.coal.2014.06.001.
  • Yu, Y., Y. Hu, W. Liang. 2010. Micro-CT experimental research of lean coal thermal cracking laws. J. China Coal Soc. 35 (10):1696–700. doi:10.13225/j.cnki.jccs.2010.10.016.
  • Yu, Y., Y. Hu, W. Liang. 2012. Study on pore characteristics of lean coal at different temperature by CT technology. Chin. J. Geophys.chin. Ed. 55 (2):637–44.
  • Zhai, C., L. Qin, S. Liu, J. Xu, Z. Tang, and S. Wu. 2016. Pore structure in coal: Pore evolution after cryogenic freezing with cyclic liquid nitrogen injection and its implication on coalbed methane extraction. ENERGY FUELS 30 (7):6009–20. doi:10.1021/acs.energyfuels.6b00920.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.