249
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Investigating the Potential of Different Modeling Setups in Simulating a Flameless Furnace Using Global and Detailed Kinetic Mechanisms

ORCID Icon, ORCID Icon &
Pages 727-761 | Received 21 Nov 2018, Accepted 16 Sep 2019, Published online: 24 Sep 2019

References

  • Aminian, J., C. Galletti, S. Shahhosseini, and L. Tognotti. 2012a. Numerical investigation of a MILd combustion burner: Analysis of mixing field, chemical kinetics and turbulence-chemistry interaction. Flow, Turbul. Combust. 88 (4):597–623. doi:10.1007/s10494-012-9386-z.
  • Aminian, J., S. Shahhosseini, and M. Bayat. 2012b. Numerical investigation of the application of high temperature air combustion in an industrial furnace. Proc. Inst. Mech. Eng. Part A 226 (5):694–705. doi:10.1177/0957650912444988.
  • Ayoub, M., C. Rottier, S. Carpentier, C. Villermaux, A. M. Boukhalfa, and D. Honoré. 2012. An experimental study of mild flameless combustion of methane/hydrogen mixtures. Int J Hydrogen Energy 37 (8):6912–21. doi:10.1016/j.ijhydene.2012.01.018.
  • Bilger, R. W., S. H. Stårner, and R. J. Kee. 1990. On reduced mechanisms for methane•air combustion in nonpremixed flames. Combust. Flame 80 (2):135–49. doi:10.1016/0010-2180(90)90122-8.
  • Chen, Z., V. M. Reddy, S. Ruan, N. A. K. Doan, W. L. Roberts, and N. Swaminathan. 2017. Simulation of MILD combustion using perfectly stirred reactor model. Proc. Combust. Inst. 36 (3):4279–86. doi:10.1016/j.proci.2016.06.007.
  • Chen, Z. X., N. A. K. Doan, X. J. Lv, N. Swaminathan, G. Ceriello, G. Sorrentino, and A. Cavaliere. 2018. Numerical study of a cyclonic combustor under moderate or intense low-oxygen dilution conditions using non-adiabatic tabulated chemistry. Energy Fuels 32 (10):10256–65. doi:10.1021/acs.energyfuels.8b01103.
  • Chitgarha, F., and A. Mardani. 2018. Assessment of steady and unsteady flamelet models for MILD combustion modeling. Int J Hydrogen Energy 43 (32):15551–63. doi:10.1016/j.ijhydene.2018.06.071.
  • Christo, F. C., and B. B. Dally. 2005. Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust. Flame 142 (1):117–29. doi:10.1016/j.combustflame.2005.03.002.
  • Coelho, P. J., and N. Peters. 2001. Numerical simulation of a mild combustion burner. Combust. Flame 124 (3):503–18. doi:10.1016/S0010-2180(00)00206-6.
  • Dally, B. B., A. N. Karpetis, and R. S. Barlow. 2002. Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc. Combust. Inst. 29 (1):1147–54. doi:10.1016/S1540-7489(02)80145-6.
  • De, A., E. Oldenhof, P. Sathiah, and D. Roekaerts. 2011. Numerical simulation of Delft-Jet-in-Hot-Coflow (DJHC) flames using the Eddy Dissipation Concept model for turbulence–chemistry interaction. Flow, Turbul. Combust. 87 (4):537–67. doi:10.1007/s10494-011-9337-0.
  • Duwig, C., and P. Iudiciani. 2014. Large Eddy Simulation of turbulent combustion in a stagnation point reverse flow combustor using detailed chemistry. Fuel 123:256–73. doi:10.1016/j.fuel.2014.01.072.
  • Ertesvåg, I. S. 2019. Analysis of some recently proposed modifications to the Eddy dissipation concept (EDC). Combust. Sci. Technol. 1–29. doi:10.1080/00102202.2019.1611565.
  • Ertesvåg, I. S., and B. F. Magnussen. 2000. The Eddy dissipation turbulence energy cascade model. Combust. Sci. Technol. 159 (1):213–35. doi:10.1080/00102200008935784.
  • Evans, M. J., P. R. Medwell, and Z. F. Tian. 2015. Modeling lifted jet flames in a heated coflow using an optimized Eddy dissipation concept model. Combust. Sci. Technol. 187 (7):1093–109. doi:10.1080/00102202.2014.1002836.
  • Evans, M. J., C. Petre, P. R. Medwell, and A. Parente. 2019. Generalisation of the eddy-dissipation concept for jet flames with low turbulence and low Damköhler number. Proc. Combust. Inst. 37 (4):4497–505. doi:10.1016/j.proci.2018.06.017.
  • Farokhi, M., and M. Birouk. 2018. A new EDC approach for modeling turbulence/chemistry interaction of the gas-phase of biomass combustion. Fuel 220:420–36. doi:10.1016/j.fuel.2018.01.125.
  • Ferrarotti, M., Z. Li, and A. Parente. 2019. On the role of mixing models in the simulation of MILD combustion using finite-rate chemistry combustion models. Proc. Combust. Inst. 37 (4):4531–38. doi:10.1016/j.proci.2018.07.043.
  • Ferrarotti, M., D. Lupant, and A. Parente. 2017. Analysis of a 20 kW flameless furnace fired with natural gas. Energy Procedia 120:104–11. doi:10.1016/j.egypro.2017.07.158.
  • Fortunato, V., C. Galletti, L. Tognotti, and A. Parente. 2015. Influence of modelling and scenario uncertainties on the numerical simulation of a semi-industrial flameless furnace. Appl. Therm. Eng. 76:324–34. doi:10.1016/j.applthermaleng.2014.11.005.
  • Ghahremanian, S., and B. Moshfegh (2011) ‘Numerical and experimental verification of initial, transitional and turbulent regions of free turbulent round jet’, in 20th AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, Honolulu, Hawaii. doi: 10.2514/6.2011-3697.
  • Han, D., and M. G. Mungal. 2001. Direct measurement of entrainment in reacting/nonreacting turbulent jets. Combust. Flame 124 (3):370–86. doi:10.1016/S0010-2180(00)00211-X.
  • Hefny, M. M., and R. Ooka. 2008. Influence of cell geometry and mesh resolution on large eddy simulation predictions of flow around a single building. Build. Simul. 1 (3):251–60. doi:10.1007/s12273-008-8321-7.
  • Hosseini, S. E., G. Bagheri, and M. A. Wahid. 2014. Numerical investigation of biogas flameless combustion. Energy Convers. Manage. 81:41–50. doi:10.1016/j.enconman.2014.02.006.
  • Ihme, M., J. Zhang, G. He, and B. Dally. 2012. Large-Eddy simulation of a Jet-in-Hot-Coflow burner operating in the oxygen-diluted combustion regime. Flow, Turbul. Combust. 89 (3):449–64. doi:10.1007/s10494-012-9399-7.
  • Khalil, A. E. E., and A. K. Gupta. 2014. Swirling flowfield for colorless distributed combustion. Appl. Energy 113:208–18. doi:10.1016/j.apenergy.2013.07.029.
  • Khidr, K. I., Y. A. Eldrainy, and M. M. El-Kassaby. 2017. Towards lower gas turbine emissions: Flameless distributed combustion. Renewable Sustainable Energy Rev. 67:1237–66. doi:10.1016/j.rser.2016.09.032.
  • Kim, J. P., U. Schnell, and G. Scheffknecht. 2008. Comparison of different global reaction mechanisms for MILD Combustion of Natural Gas. Combust. Sci. Technol. 180 (4):565–92. doi:10.1080/00102200701838735.
  • Lewandowski, M. T., and I. S. Ertesvåg. 2018. Analysis of the Eddy dissipation concept formulation for MILD combustion modelling. Fuel 224:687–700. doi:10.1016/j.fuel.2018.03.110.
  • Li, P., and J. Mi. 2011. Influence of inlet dilution of reactants on premixed combustion in a recuperative furnace. Flow Turbul. Combust. 87 (4):617–38. doi:10.1007/s10494-011-9348-x.
  • Li, P., J. Mi, B. B. Dally, F. Wang, L. Wang, Z. Liu, S. Chen, and C. Zheng. 2011. Progress and recent trend in MILD combustion. Sci. China Technol. Sci. 54 (2):255–69. doi:10.1007/s11431-010-4257-0.
  • Li, P., F. Wang, J. Mi, B. B. Dally, and Z. Mei. 2014. MILD combustion under different premixing patterns and characteristics of the reaction regime. Energy Fuels 28 (3):2211–26. doi:10.1021/ef402357t.
  • Li, Z., A. Cuoci, and A. Parente. 2019. Large Eddy Simulation of MILD combustion using finite rate chemistry: Effect of combustion sub-grid closure. Proc. Combust. Inst. 37 (4):4519–29. doi:10.1016/j.proci.2018.09.033.
  • Li, Z., M. T. Lewandowski, F. Contino, and A. Parente. 2018. Assessment of on-the-fly chemistry reduction and tabulation approaches for the simulation of moderate or intense low-oxygen dilution combustion. Energy Fuels 32 (10):10121–31. doi:10.1021/acs.energyfuels.8b01001.
  • Lupant, D., and P. Lybaert. 2015. Assessment of the EDC combustion model in MILD conditions with in-furnace experimental data. Appl. Therm. Eng. 75:93–102. doi:10.1016/j.applthermaleng.2014.10.027.
  • Magnussen, B. 1981. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. 19th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, St. Louis, MO, U.S.A. doi: 10.2514/6.1981-42.
  • Magnussen, B. F. 2005. The Eddy dissipation concept—A bridge between science and technology. ECCOMAS thematic conference on computational combustion, Libson, Portugal, 24.
  • Magnussen, B. F., and B. H. Hjertager. 1977. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. (Int.) Combust. 16 (1):719–29. doi:10.1016/S0082-0784(77)80366-4.
  • Mancini, M., P. Schwöppe, R. Weber, and S. Orsino. 2007. On mathematical modelling of flameless combustion. Combust. Flame 150 (1–2):54–59. doi:10.1016/j.combustflame.2007.03.007.
  • Mardani, A. 2017. Optimization of the Eddy Dissipation Concept (EDC) model for turbulence-chemistry interactions under hot diluted combustion of CH4/H2. Fuel 191:114–29. doi:10.1016/j.fuel.2016.11.056.
  • Mi, J., P. Li, and C. Zheng. 2011. Impact of injection conditions on flame characteristics from a parallel multi-jet burner. Energy 36 (11):6583–95. doi:10.1016/j.energy.2011.09.003.
  • Mi, J., F. Wang, P. Li, and B. B. Dally. 2012. Modified vitiation in a Moderate or Intense Low-Oxygen Dilution (MILD) combustion furnace. Energy Fuels 26 (1):265–77. doi:10.1021/ef201161x.
  • Minamoto, Y., and N. Swaminathan. 2015. Subgrid scale modelling for MILD combustion. Proc. Combust. Inst. 35 (3):3529–36. doi:10.1016/j.proci.2014.07.025.
  • Minamoto, Y., N. Swaminathan, R. S. Cant, and T. Leung. 2014a. Reaction zones and their structure in MILD combustion. Combust. Sci. Technol. 186 (8):1075–96. doi:10.1080/00102202.2014.902814.
  • Minamoto, Y., N. Swaminathan, S. R. Cant, and T. Leung. 2014b. Morphological and statistical features of reaction zones in MILD and premixed combustion. Combust. Flame 161 (11):2801–14. doi:10.1016/j.combustflame.2014.04.018.
  • Panne, T., A. Widenhorn, and M. Aigner. 2009. Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air. Volume 2: Combustion, Fuels and Emissions. Orlando, Florida, USA. 2009. pp. 37–48.
  • Parente, A., C. Galletti, J. Riccardi, M. Schiavetti, and L. Tognotti. 2012. Experimental and numerical investigation of a micro-CHP flameless unit. Appl. Energy 89 (1):203–14. doi:10.1016/j.apenergy.2011.06.055.
  • Parente, A., M. R. Malik, F. Contino, A. Cuoci, and B. B. Dally. 2016. Extension of the Eddy dissipation concept for turbulence/chemistry interactions to MILD combustion. Fuel 163:98–111. doi:10.1016/j.fuel.2015.09.020.
  • Pope, S. B. 1978. An explanation of the turbulent round-jet/plane-jet anomaly. Aiaa J. 16 (3):279–81. doi:10.2514/3.7521.
  • Rebola, A., P. J. Coelho, and M. Costa. 2013. Assessment of the performance of several turbulence and combustion models in the numerical simulation of a flameless combustor. Combust. Sci. Technol. 185 (4):600–26. doi:10.1080/00102202.2012.739222.
  • Roache, P. 2003. Error bars for CFD. 41st Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, Nevada. doi: 10.2514/6.2003-408.
  • Rottier, C., C. Lacour, G. Godard, B. Taupin, A. Boukhalfa, D. Honoré, L. Porcheron, and R. Hauguel 2007. An aerodynamic way to reach mild combustion regime in a laboratory-scale furnace. Proceedings of the European Combustion Meeting, Crete, Greece.
  • Rottier, C., C. Lacour, G. Godard, B. Taupin, L. Porcheron, R. Hauguel, S. Carpentier, A. Boukhalfa, and D. Honoré 2009. On the effect of air temperature on mild flameless combustion regime of high temperature furnace. Proceedings of the European Combustion Meeting. Vienna, Austria.
  • Schütz, H., R. Lückerath, T. Kretschmer, B. Noll, and M. Aigner. 2008. Analysis of the pollutant formation in the FLOX® combustion. J. Eng. Gas Turbines Power 130 (1):011503. doi:10.1115/1.2747266.
  • Schwer, L. E. 2008. Is your mesh refined enough? Estimating discretization error using GCI. 7th LS-DYNA Anwenderforum 1 (1):45–54.
  • Shiehnejadhesar, A., R. Mehrabian, R. Scharler, G. M. Goldin, and I. Obernberger. 2014. Development of a gas phase combustion model suitable for low and high turbulence conditions. Fuel 126:177–87. doi:10.1016/j.fuel.2014.02.040.
  • Slater, J. W. 2006. Examining spatial (grid) convergence. Public Tutorial on CFD Verif. Validation, NASA Glenn Res. Centre, MS 86. doi:10.1115/1.3245174.
  • Smith, T. F., Z. F. Shen, and J. N. Friedman. 1982. Evaluation of coefficients for the weighted sum of gray gases model. J Heat Transfer 104 (4):602–08. doi:10.1115/1.3245174.
  • Szegö, G. G. 2010. Experimental and numerical investigation of a parallel jet MILD combustion burner system in a laboratory-scale furnace, unpublished thesis (Doctor of Philosophy), University of Adelaide, available: https://digital.library.adelaide.edu.au/dspace/bitstream/2440/64813/8/02main.pdf.
  • Tsuji, H., A. K. Gupta, T. Hasegawa, M. Katsuki, K. Kishimoto, and M. Morita. 2010. High temperature air combustion: From energy conservation to pollution reduction. Boca Raton, Florida: CRC press.
  • Wang, L., Z. Liu, S. Chen, and C. Zheng. 2012. Comparison of different global combustion mechanisms under hot and diluted oxidation conditions. Combust. Sci. Technol. 184 (2):259–76. doi:10.1080/00102202.2011.635612.
  • Wünning, J. A., and J. G. Wünning. 1997. Flameless oxidation to reduce thermal no-formation. Prog. Energy Combust. Sci. 23 (1):81–94. doi:10.1016/S0360-1285(97)00006-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.