278
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Large-Eddy Simulation of High-Speed Vaporizing Liquid-Fuel Spray Using Mixed Gradient-Type Structural Subgrid-Scale Model

, , &
Pages 762-783 | Received 26 Apr 2019, Accepted 24 Sep 2019, Published online: 09 Oct 2019

References

  • Banerjee, S., and C. Rutland. 2012. On LES grid criteria for spray induced turbulence. SAE Technical Paper.
  • Bardina, J., J. H. Ferziger, and W. C. Reynolds. 1980. Improved subgrid scale models for large eddy simulation. AIAA Paper No. 80-1357.
  • Basdevant, C., and R. Sadourny. 1983. Modélisation des échelles virtuelles dans la simulation numérique des éecoulements turbulents bidimensionels. J. Méc. Théor. Appl. Numéro Spécial. 243–69.
  • Beale, J. C., and R. D. Reitz. 1999. Modeling spray atomization with the kelvin-helmholtz/rayleigh taylor hybrid model. Atomization Sprays 9 (6):623–50. doi:10.1615/AtomizSpr.v9.i6.40.
  • Bekdemir, C., L. M. T. Somers, L. P. H. De Goey, J. Tillou, and C. Angelberger. 2013. Predicting diesel combustion characteristics with large-eddy simulations including tabulated chemical kinetics. Proc. Combust. Inst. 34 (2):3067–74. doi:10.1016/j.proci.2012.06.160.
  • Bharadwaj, N., C. J. Rutland, and S. Chang. 2009. Large eddy simulation modelling of spray-induced turbulence effects. Int. J. Engine Res. 10: doi: 10.1243/14680874JER02309.
  • Bhattacharjee, S., and D. C. Haworth. 2013. Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported pdf method. Combust. Flame 160 (10):2083–102. doi:10.1016/j.combustflame.2013.05.003.
  • Bottone, F., A. Kronenburg, D. Gosman, and A. Marquis. 2012. The numerical simulation of diesel spray combustion with les-cmc. Flow Turbul. Combust. 89 (4):651–73. doi:10.1007/s10494-012-9415-y.
  • Christo, F. C., and B. B. Dally. 2005. Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust. Flame 142:117–29. doi:10.1016/j.combustflame.2005.03.002.
  • Clark, R. A., J. H. Ferziger, and W. C. Reynolds. 1979. Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91 (1):1–16. doi:10.1017/S002211207900001X.
  • Deardorff, J. W. 1973. The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J. Fluids Eng. 95:429–38. doi:10.1115/1.3447047.
  • Desantes, J. M., J. M. García-Oliver, R. Novella, and E. J. Pérez-Sánchez. 2018. Application of a flamelet-based CFD combustion model to the LES simulation of a diesel-like reacting spray. Tenth International Conference on Computational Fluid Dynamics (ICCFD10), Barcelona, Spain.
  • Engine Combustion Network (ECN). http://www.sandia.gov/ecn/index.php.
  • Faeth, G. M. 1977. Current status of droplet and liquid combustion. Prog. Energy Combust. Sci. 3 (4):191–224. doi:10.1016/0360-1285(77)90012-0.
  • Ferziger, J. H. November 2000. Large eddy simulation - a short course. Stanford University.
  • Garnier, E., N. Adams, and P. Sagaut. 2001. Large eddy simulation for compressible flows. Scientific Computation 12(10):1745-1746. Springer Netherlands.
  • Germano, M., U. Piomelli, and W. H. Cabot. July 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7):1760–65. doi: 10.1063/1.857955.
  • Gong, C., M. Jangi, and X. S. Bai. 2014. Large eddy simulation of n-dodecane spray combustion in a high pressure combustion vessel. Appl. Energy 136:373–81. doi:10.1016/j.apenergy.2014.09.030.
  • Kahila, H., A. Wehrfritz, O. Kaario, M. G. Masouleh, N. Maes, B. Somers, and V. Vuorinen. 2018. Large-eddy simulation on the influence of injection pressure in reacting spray a. Combust. Flame 191:142–59. doi:10.1016/j.combustflame.2018.01.004.
  • Kermani, E. L., E. Roohi, and F. Porté-Agel. 2018. Evaluating the modulated gradient model in large eddy simulation of channel flow with OpenFOAM. J. Turbul. 19:7.
  • Liu, S., C. Meneveau, and J. Katz. 1994. On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fluid Mech. 275:83–119. doi:10.1017/S0022112094002296.
  • Lu, H. August 2007. One-equation LES modeling of rotating turbulence. Dissertation, University of Wisconsin, Madison.
  • Lu, H., C. Zou, S. Shao, and H. Yao. 2019b. Large-eddy simulation of MILD combustion using partially stirred reactor approach. Proc. Combust. Inst. 37 (4):4507–18. doi:10.1016/j.proci.2018.09.032.
  • Lu, H., and C. J. Rutland. 2016. Structural subgrid-scale modeling for large-eddy simulation: A review. Acta Mech. Sin. 32 (4):567–78. doi:10.1007/s10409-016-0556-4.
  • Lu, H., C. J. Rutland, and L. M. Smith. 2007. A priori tests of one-equation LES modeling of rotating turbulence. J. Turbul. 8 (37):1–27. doi:10.1080/14685240701493947.
  • Lu, H., C. J. Rutland, and L. M. Smith. 2008. A posteriori tests of one-equation LES modeling of rotating turbulence. Int. J. Mod. Phys. C 19:1949–64. doi:10.1142/S0129183108013394.
  • Lu, H., W. Chen, C. Zou, and H. Yao. 2019a. Large-eddy simulation of Sandia Flame F using structural subgrid-scale models and partially-stirred-reactor approach. Phys. Fluids. doi:10.1063/1.5087078.
  • Ma, P. C., H. Wu, T. Jaravel, L. Bravo, and M. Ihme. 2019. Large-eddy simulations of transcritical injection and auto-ignition using diffuse-interface method and finite-rate chemistry. Proc. Combust. Inst. 3303–10. doi:10.1016/j.proci.2018.05.063.
  • Matheis, J., and S. Hickel. 2017. Multi-component vapor-liquid equilibrium model for les of high-pressure fuel injection and application to ecn spraya. Int. J. Multiphase Flow 99:294–311. doi:10.1016/j.ijmultiphaseflow.2017.11.001.
  • Meneveau, C., and J. Katz. 2000. Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32:1–32. doi:10.1146/annurev.fluid.32.1.1.
  • Menon, S., P.-K. Yeung, and -W.-W. Kim. 1996. Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence. Comp. Fluids 25 (2):165–80. doi:10.1016/0045-7930(95)00036-4.
  • O’Rourke, P. J. November 1981. Collective Drop Effects on Vaporizing Liquid Sprays. PhD thesis, Princeton University, United States.
  • Pei, Y., E. R. Hawkes, M. Bolla, S. Kook, G. M. Goldin, Y. Yang, S. B. Pope, and S. Som. 2016. An analysis of the structure of an n -dodecane spray flame using tpdf modelling. Combust. Flame 168:420–35. doi:10.1016/j.combustflame.2015.11.034.
  • Pei, Y., E. R. Hawkes, and S. N. Kook. 2013. Transported probability density function modelling of the vapour phase of an n-heptane jet at diesel engine conditions. Proc. Combust. Inst. 34 (2):3039–47. doi:10.1016/j.proci.2012.07.033.
  • Pickett, L. M., J. Manin, C. L. Genzale, D. L. Siebers, M. P. B. Musculus, and C. A. Idicheria. 2011. Relationship between diesel fuel spray vapor penetration/dispersion and local fuel mixturefraction. SAE Int. J. Engines 4 (1):764–99. doi:10.4271/2011-01-0686.
  • Pomraning, E. 2000. Development of large eddy simulation turbulence models. PhD thesis, University of Wisconsin, Madison.
  • Pope, S. B. 2000. Turbulent flows. Cambridge: Cambridge University Press.
  • Reitz, R. D. 1987. Modeling atomization processes in high-pressure vaporizing sprays. Atomization Spray Technol. 3 (309):309–37.
  • Rutland, C. J. 2011. Large-eddy simulations for internal combustion engines - a review. Int. J. Engine Res. 12:1–31. doi:10.1177/1468087411407248.
  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations: I. the basic experiment. Mon. Weather Rev. 91 (3):99–164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
  • Tsang, C.-W., M. F. Trujillo, and C. J. Rutland. 2014. Large-eddy simulation of shear flows and high-speed vaporizing liquid fuel sprays. Compute. Fluids 105:262–79. doi:10.1016/j.compfluid.2014.09.014.
  • Vreman, B., B. Geurts, and H. Kuerten. 1997. Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech. 339:357–90. doi:10.1017/S0022112097005429.
  • Wehrfritz, A., O. Kaario, V. Vuorinen, and B. Somers. 2016. Large eddy simulation of n-dodecane spray flames using flamelet generated manifolds. Combust. Flame 167:113–31. doi:10.1016/j.combustflame.2016.02.019.
  • Xue, Q., S. Som, P. K. Senecal, and E. Pomraning. 2013. Large eddy simulation of fuel spray under non-reacting IC engine conditions. Atomization Sprays 23 (10):925–55. doi:10.1615/AtomizSpr.v23.i10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.