208
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Influences of a Pipeline’s Bending Angle on the Propagation Law of Coal Dust Explosion Induced by Gas Explosion

, , , &
Pages 798-811 | Received 06 Jul 2019, Accepted 24 Sep 2019, Published online: 02 Oct 2019

References

  • Ajrash, M. J., J. Zanganeh, and B. Moghtaderi. 2017. Impact of suspended coal dusts on methane deflagration properties in a large-scale straight duct. J. Hazard. Mater. 338:334–42. doi:10.1016/j.jhazmat.2017.05.030.
  • Geng, F., G. Luo, F. B. Zhou, P. T. Zhao, L. Ma, H. L. Chai, and T. T. Zhang. 2017. Numerical investigation of dust dispersion in a coal roadway with hybrid ventilation system. Powder Technol. 313:260–71. doi:10.1016/j.powtec.2017.03.021.
  • Houim, R. W., and E. S. Oran. 2015. Structure and flame speed of dilute and dense layered coal-dust explosions. J. Loss Prevent. Proc. 36:216–24. doi:10.1016/j.jlp.2015.01.015.
  • Hu, S. Q., C. J. Wei, and Y. X. Tan. 2010. Experimental study on secondary explosion of deposited coal dust caused by gas explosion in pipeline. J. Basic Sci. Eng. 18 (06):895–99. in Chinese.
  • Jiang, B. Y., M. Q. Su, Z. G. Liu, F. Cai, S. J. Yuan, S. L. Shi, and B. Q. Lin. 2016. Effects of changes in fuel volume on the explosion-proof distance and the multiparameter attenuation characteristics of methane-air explosions in a semi-confined pipe. J. Loss Prevent. Proc. 39:17–23. doi:10.1016/j.jlp.2015.11.008.
  • Jiang, H. P., M. S. Bi, B. Li, B. Gan, and W. Gao. 2018. Combustion behaviors and temperature characteristics in pulverized biomass dust explosions. Renew. Energ. 122:45–54. doi:10.1016/j.renene.2018.01.063.
  • Jing, G. X., and S. Z. Yang. 2010. Experimental study on propagation characteristics of coal dust explosion. J. Chin. Coal Soc. 35 (4):605–08. in Chinese.
  • Kundu, S. K., J. Zanganeh, D. Eschebach, N. Mahinpey, and B. Moghtaderi. 2017. Explosion characteristics of methane–Air mixtures in a spherical vessel connected with a duct. Process Saf. Environ. 111:85–93. doi:10.1016/j.psep.2017.06.014.
  • Li, Q. Z., C. G. Yuan, Q. L. Tao, Y. N. Zheng, and Y. Zhao. 2018a. Experimental analysis on post-explosion residues for evaluating coal dust explosion severity and flame propagation behaviors. Fuel 215:417–28. doi:10.1016/j.fuel.2017.11.093.
  • Li, R. Z. 2018c. The lower limit of coal dust cloud explosion under the condition of gas and coal dust coexistence. Explo. Shock Waves 38 (04):913–17. in Chinese.
  • Li, R. Z., R. J. Si, K. Gao, X. X. Qin, and L. X. Wen. 2018b. Experimental study on the effect of explosion suppression in low-concentration gas transportation. J. Loss Prevent. Proc. 54:216–21. doi:10.1016/j.jlp.2018.04.005.
  • Li, Z. Q., C. M. Mu, D. K. Xu, and W. Q. Zhang. 2018d. Study on the influence of cavity length on gas shock propagation in gas explosion. J. Min. Saf. Eng. 35 (06):1293–300. in Chinese.
  • Lin, B. Q., Y. D. Hong, C. J. Zhu, B. Y. Jiang, Q. Liu, and Y. M. Sun. 2013a. Effect of length on the relationships between the gas velocity and peak overpressure of gas explosion disasters in closed-end pipes. Disaster Adv. 6:176–84.
  • Lin, B. Q., Y. M. Sun, C. J. Zhu, B. Y. Jiang, Q. Liu, and Y. D. Hong. 2013b. Dynamic parameters of dust lifting process behind shock waves of gas explosion disasters. Disaster Adv. 6:214–22.
  • Lin, S., Z. T. Liu, J. F. Qian, and X. L. Li. 2019. Comparison on the explosivity of coal dust and of its explosion solid residues to assess the severity of re-explosion. Fuel. 251:438–46. doi:10.1016/j.fuel.2019.04.080.
  • Liu, Y., J. H. Sun, and D. L. Chen. 2007. Flame propagation in hybrid mixture of coal dust and methane. J. Loss Prevent. Proc. 20 (4):691–97. doi:10.1016/j.jlp.2007.04.029.
  • Liu, Z. T., S. Hong, S. S. Zhang, S. Lin, L. M. Qiu, S. K. Xia, R. Zhang, and J. F. Qian. 2017. Experimental investigations on explosion behaviors of large-particle and formation rules of gas residues. J. Loss Prevent. Proc. 46:37–44. doi:10.1016/j.jlp.2017.01.016.
  • Ma, Q. J., Q. Zhang, J. C. Chen, Y. Huang, and Y. T. Shi. 2014. Effects of hydrogen on combustion characteristics of methane in air. Int. J. Hydrogen Energ. 39 (21):11291–98. doi:10.1016/j.ijhydene.2014.05.030.
  • Moiseeva, K. M., and A. Y. Krainov. 2018. Numerical simulation of spark ignition of a coal dust-air mixture. Combust. Explo. Shock. 54 (2):179–88. doi:10.1134/S0010508218020077.
  • Pontalier, Q., M. Lhoumeau, A. M. Milne, A. W. Longbottom, and D. L. Frost. 2018. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials. Shock Waves 28 (3):513–31. doi:10.1007/s00193-018-0820-6.
  • Seaman, C. E., M. R. Shahan, T. W. Beck, and S. E. Mischler. 2018. Comparison of the CAS-POL and IOM samplers for determining the knockdown efficiencies of water sprays on float coal dust. J. Occup. Environ. Hyg. 15 (3):214–25. doi:10.1080/15459624.2017.1411597.
  • Shimura, K., and A. Matsuo. 2019. Using an extended CFD–DEM for the two-dimensional simulation of shock-induced layered coal-dust combustion in a narrow channel. P. Combust. Inst. 37 (3):3677–84. doi:10.1016/j.proci.2018.07.066.
  • Song, Y. F., B. Nassim, and Q. Zhang. 2018. Explosion energy of methane/deposited coal dust and inert effects of rock dust. Fuel 228:112–22. doi:10.1016/j.fuel.2018.04.155.
  • Song, Y. F., and Q. Zhang. 2019. Multiple explosions induced by the deposited dust layer in enclosed pipeline. J. Hazard. Mater. 371:423–32. doi:10.1016/j.jhazmat.2019.03.040.
  • Song, Y. F., Q. Zhang, and W. W. Wu. 2017. Interaction between gas explosion flame and deposited dust. Process Saf. Environ. 111:775–84. doi:10.1016/j.psep.2017.09.004.
  • Torrado, D., V. Buitrago, P. A. Glaude, and O. Dufaud. 2017. Explosions of methane/air/nanoparticles mixtures: Comparison between carbon black and inert particles. Process Saf. Environ. 110 (S1):77–88. doi:10.1016/j.psep.2017.04.014.
  • Torrado, D., A. Pinilla, M. Amin, C. Murillo, F. Munoz, P. A. Glaude, and O. Dufaud. 2018. Numerical study of the influence of particle reaction and radiative heat transfer on the flame velocity of gas/nanoparticles hybrid mixtures. Process Saf. Environ. 118:211–26. doi:10.1016/j.psep.2018.06.042.
  • Torrent, J. G. 1989. Flammability an explosion propagation of methane–Coal dust hybrid mixtures. Proc. Int. Conf. Saf. Mines Res. Inst. 23:11–15.
  • Wang, C., Y. Y. Zhao, and E. K. Addai. 2017. Investigation on propagation mechanism of large scale mine gas explosions. J. Loss Prevent. Proc. 49:342–47. doi:10.1016/j.jlp.2017.07.011.
  • Wang, S. Y., Z. C. Shi, X. Peng, Y. Zhang, W. G. Cao, W. H. Chen, and J. Li. 2019. Effect of the ignition delay time on explosion severity parameters of coal dust/air mixtures. Powder Technol. 342:509–16. doi:10.1016/j.powtec.2018.10.020.
  • Wang, Y. J., S. G. Jiang, Z. Y. Wu, H. Shao, K. Wang, and L. Wang. 2018. Study on the inhibition influence on gas explosions by metal foam based on its density and coal dust. J. Loss Prevent. Proc. 56:451–57. doi:10.1016/j.jlp.2018.09.009.
  • Wei, C. J., Y. X. Tan, S. Q. Hu, and W. B. Hou. 2014. Experimental study on gas explosion-induced secondary explosion of gas and coal dust. Chin. Saf. Sci. J. 24 (12):29–32. in Chinese.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.