139
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Surface Density Function Evolution in Spherically Expanding Flames in Globally Stoichiometric Droplet-laden Mixtures

, &
Pages 1-21 | Received 15 Jan 2019, Accepted 02 Sep 2019, Published online: 24 Oct 2019

References

  • Boger, M., D. Veynante, H. Boughanem, and A. Trouvé. 1998. Direct Numerical Simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Comb. Inst. 27:917–25. doi:10.1016/S0082-0784(98)80489-X.
  • Candel, S. M., and T. J. Poinsot. 1990. Flame stretch and the balance equation for the flame area. Comb. Sci. Tech. 70:1–15. doi:10.1080/00102209008951608.
  • Chakraborty, N., and R. S. Cant. 2005. Effects of strain rate and curvature on Surface Density Function transport in turbulent premixed flames in the thin reaction zones regime. Phys. Fluids 17:65108. doi:10.1063/1.1923047.
  • Chakraborty, N., M. Champion, A. Mura, and N. Swaminathan. 2011. Scalar dissipation rate approach to reaction rate closure. In Turbulent premixed flame 1st ed. ed. N. Swaminathan and K. N. C. Bray, 74–102. Cambridge, UK: Cambridge University Press.
  • Chakraborty, N., E. R. Hawkes, J. H. Chen, and R. S. Cant. 2008. Effects of strain rate and curvature on Surface Density Function transport in turbulent premixed CH4-air and H2-air flames: A comparative study. Comb. Flame 154:259–80. doi:10.1016/j.combustflame.2008.03.015.
  • Chakraborty, N., and M. Klein. 2008. Influence of lewis number on the Surface Density Function transport in the thin reaction zones regime for turbulent premixed flames. Phys. Fluids 20:065102. doi:10.1063/1.2919129.
  • Chakraborty, N., and M. Klein. 2009. Effects of global flame curvature on the Surface Density Function transport in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Comb. Inst. 32:1435–43. doi:10.1016/j.proci.2008.06.022.
  • Chakraborty, N., M. Klein, D. Alwazzan, and H. G. Im. 2018. Surface Density Function statistics in Hydrogen-air flames for different turbulent premixed combustion regimes. Comb. Sci. Tech 190:1988–2002. doi:10.1080/00102202.2018.1480015.
  • Chakraborty, N., M. Klein, and R. S. Cant. 2007. Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Comb. Inst. 31:1385–92. doi:10.1016/j.proci.2006.07.184.
  • Chakraborty, N., J. Rogerson, and N. Swaminathan. 2010. The scalar gradient alignment statistics of flame kernels and its modelling implications for turbulent premixed combustion. Flow Turb. Comb. 85:25–55. doi:10.1007/s10494-010-9250-y.
  • Chakraborty, N., and N. Swaminathan. 2007. Influence of Damköhler number on turbulence-scalar interaction in premixed flames, Part I: Physical Insight. Phys. Fluids 19:045103. doi:10.1063/1.2714070.
  • Dopazo, C., and L. Cifuentes. 2016. The physics of scalar gradients in turbulent premixed combustion and its relevance to modeling. Comb. Sci. Tech. 188:1376–97. doi:10.1080/00102202.2016.1197919.
  • Dopazo, C., L. Cifuentes, D. Alwazzan, and N. Chakraborty. 2018. Influence of the Lewis number on effective strain rates in weakly turbulent premixed combustion. Comb. Sci. Tech. 190:591–614. doi:10.1080/00102202.2017.1398744.
  • Dopazo, C., L. Cifuentes, J. Hierro, and J. Martin. 2015b. Micro-scale mixing in turbulent constant density reacting flows and premixed combustion. Flow Turb. Comb. 96:547–71. doi:10.1007/s10494-015-9663-8.
  • Dopazo, C., L. Cifuentes, J. Martin, and C. Jimenez. 2015a. Strain rates normal to approaching iso-scalar surfaces in a turbulent premixed flame. Comb. Flame 162:1729–36. doi:10.1016/j.combustflame.2014.11.034.
  • Echekki, T., and J. H. Chen. 1999. Analysis of the contribution of curvature to premixed flame propagation. Comb. Flame 118:303–11. doi:10.1016/S0010-2180(99)00006-1.
  • Kim, S. H., and H. Pitsch. 2007. Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Fluids 19:115104. doi:10.1063/1.2784943.
  • Klein, M., D. Alwazzan, and N. Chakraborty. 2018. A Direct Numerical Simulation analysis of pressure variation in turbulent premixed Bunsen burner flames- Part 1: Scalar gradient and strain rate statistics. Comput. Fluids 173:178–88. doi:10.1016/j.compfluid.2018.03.010.
  • Kollmann, W., and J. H. Chen. 1998. Pocket formation and the flame surface density equation. Proc. Comb. Inst. 27:927–34. doi:10.1016/S0082-0784(98)80490-6.
  • Mizutani, Y., and T. Nishimoto. 1973. Combustion of fuel vapor-drop-air systems: Part II - Spherical flames in a vessel. Comb.Flame. 20:351–57. doi:10.1016/0010-2180(73)90027-8.
  • Neophytou, A., and E. Mastorakos. 2009. Simulations of laminar flame propagation in droplet mists. Comb. Flame 156:1627–40. doi:10.1016/j.combustflame.2009.02.014.
  • Neophytou, A., E. Mastorakos, and R. S. Cant. 2010. DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers. Comb. Flame 157:1071–86. doi:10.1016/j.combustflame.2010.01.019.
  • Neophytou, A., E. Mastorakos, and R. S. Cant. 2012. The internal structure of igniting turbulent sprays as revealed by complex chemistry DNS. Comb. Flame 159:641–64. doi:10.1016/j.combustflame.2011.08.024.
  • Ozel Erol, G., J. Hasslberger, M. Klein, and N. Chakraborty. 2018. A Direct Numerical Simulation analysis of spherically expanding turbulent flames in fuel droplet-mists for an overall equivalence ratio of unity. Phys. Fluids. 30:086104. doi:10.1063/1.5045487.
  • Ozel Erol, G., J. Hasslberger, M. Klein, and N. Chakraborty. 2019a. A Direct Numerical Simulation investigation of spherically expanding flames propagating in fuel droplet-mists for different droplet diameters and overall equivalence ratios. Comb. Sci. Tech. 191:833–67. doi:10.1080/00102202.2019.1576649.
  • Ozel Erol, G., J. Hasslberger, M. Klein, and N. Chakraborty. 2019b. Propagation of spherically expanding turbulent flames into fuel droplet-mists. Flow Turb. Comb. doi:10.1007/s10494-019-00035-x.
  • Peters, N., P. Terhoeven, J. H. Chen, and T. Echekki. 1998. Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Proc. Comb. Inst. 27:833–39. doi:10.1016/S0082-0784(98)80479-7.
  • Pope, S. B. 1988. The evolution of surfaces in turbulence. Int J. Eng. Sci. 26:445–69. doi:10.1016/0020-7225(88)90004-3.
  • Reveillon, J., and L. Vervisch. 2000. Spray vaporization in nonpremixed turbulent combustion modeling: A single droplet model. Comb.Flame 121:75–90. doi:10.1016/S0010-2180(99)00157-1.
  • Sandeep, A., F. Proch, A. M. Kempf, and N. Chakraborty. 2018. Statistics of strain rates and Surface Density Function in a flame-resolved high-fidelity simulation of a turbulent premixed bluff body burner. Phys. Fluids 30:065101. doi:10.1063/1.5029931.
  • Sankaran, R., E. R. Hawkes, J. H. Chen, T. Lu, and C. K. Law. 2007. Structure of a spatially developing turbulent lean methane–Air Bunsen flame. Proc. Comb. Inst. 31:1291–98. doi:10.1016/j.proci.2006.08.025.
  • Schroll, P., A. P. Wandel, R. S. Cant, and E. Mastorakos. 2009. Direct numerical simulations of autoignition in turbulent two-phase flows. Proc. Comb. Inst. 32:2275–82. doi:10.1016/j.proci.2008.06.057.
  • Sreedhara, S., and K. Y. Huh. 2007. Conditional statistics of nonreacting and reacting sprays in turbulent flows by direct numerical simulation. Proc. Comb. Inst. 31:2335–42. doi:10.1016/j.proci.2006.07.163.
  • Tarrazo, E. F., A. L. Sánchez, A. Liñán, and F. A. Williams. 2006. A simple one-step chemistry model for partially premixed hydrocarbon combustion. Comb. Flame 147:32–38. doi:10.1016/j.combustflame.2006.08.001.
  • Vervisch, L., E. Bidaux, K. N. C. Bray, and W. Kollmann. 1995. Surface Density Function in premixed turbulent combustion modelling, similarities between probability density function and flame surface approaches. Phys. Fluids 7:2496–503. doi:10.1063/1.868693.
  • Wacks, D., and N. Chakraborty. 2016. Flame structure and propagation in turbulent flame-droplet interaction: a Direct Numerical Simulation analysis. Flow, Turb. Comb. 96:1053–81. doi:10.1007/s10494-016-9724-7.
  • Wacks, D., N. Chakraborty, and E. Mastorakos. 2016. Statistical analysis of turbulent flame-droplet interaction: A Direct Numerical Simulation study. Flow, Turb. Comb. 96:573–607. doi:10.1007/s10494-015-9652-y.
  • Wandel, A. P. 2014. Influence of scalar dissipation on flame success in turbulent sprays with spark ignition. Comb. Flame 161:2579–600. doi:10.1016/j.combustflame.2014.04.006.
  • Wandel, A. P., N. Chakraborty, and E. Mastorakos. 2007. Direct numerical simulations of turbulent flame expansion in fine sprays. Proc. Comb. Inst. 32:2283–90. doi:10.1016/j.proci.2008.06.102.
  • Wang, H., E. R. Hawkes, J. H. Chen, B. Zhou, Z. Li, and M. Alden. 2017. Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame- an analysis of flame stretch and flame thickening. J. Fluid Mech. 815:511–36. doi:10.1017/jfm.2017.53.
  • Wang, Y., and C. J. Rutland. 2005. Effects of temperature and equivalence ratio on the ignition of n-heptane fuel spray in turbulent flow. Proc. Comb. Inst. 30:893–900. doi:10.1016/j.proci.2004.08.074.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.