278
Views
3
CrossRef citations to date
0
Altmetric
Research Article

On the Use of Fractional-Order Quadrature-Based Moment Closures for Predicting Soot Formation in Laminar Flames

, &
Pages 22-44 | Received 19 Jan 2019, Accepted 02 Oct 2019, Published online: 17 Oct 2019

References

  • Akih-Kumgeh, B. 2013. Comparison of detailed and reduced models for syngas and ethanol. Canada: Alternative Fuels Laboratory, Department of Mechanical Engineering, McGill University.
  • Appel, J., H. Bockhorn, and M. Frenklach. 2000. Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of c2 hydrocarbons. Combust. Flame 121 (1–2):122–36. doi:10.1016/S0010-2180(99)00135-2.
  • Balthasar, M., and M. Kraft. 2003. A stochastic approach to calculate the particle size distribution function of soot particles in laminar premixed flames. Combust. Flame 133:289–98. doi:10.1016/S0010-2180(03)00003-8.
  • Bhatt, J. S., and R. P. Lindstedt. 2009. Analysis of the impact of agglomeration and surface chemistry models on soot formation and oxidation. Proceedings of the Combustion Institute, vol. 32, 713–20. McGill University, Canada.
  • Blacha, T., M. D. Domenico, P. Gerlinger, and M. Aigner. 2012. Soot predictions in premixed and non- premixed laminar flames using a sectional approach for pahs and soot. Combust. Flame 159:181–93. doi:10.1016/j.combustflame.2011.07.006.
  • Blanquart, G., and H. Pitsch. 2009. Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model. Combust. Flame 156:1614–26. doi:10.1016/j.combustflame.2009.04.010.
  • Buffo, A., M. Vanni, and D. L. Marchisio. 2012. Multidimensional population balance model for the simulation of turbulent gas-liquid systems in stirred tank reactors. Chem. Eng. Sci. 70:31–44. doi:10.1016/j.ces.2011.04.042.
  • Celnik, M., R. Patterson, M. Kraft, and W. Wagner. 2007. Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting. Combust. Flame 148:158–76. doi:10.1016/j.combustflame.2006.10.007.
  • Chalons, C., R. O. Fox, and M. Massot. 2010. A multi-gaussian quadrature method of moments for gas- particle flows in a les framework. In Proceedings of the summer program 2010, 347–58. Palo Alto, California.
  • Charest, M. R., C. P. Groth, and Ö. L. Gülder. 2010. A computational framework for predicting laminar reactive flows with soot formation. Combust. Theor. Model. 14:793–825. doi:10.1080/13647830.2010.512960.
  • Charest, M. R., C. P. Groth, and Ö. L. Gülder. 2011. Effects of gravity and pressure on laminar coflow methane–Air diffusion flames at pressures from 1 to 60 atmospheres. Combust. Flame 158 (5):860–75. doi:10.1016/j.combustflame.2011.01.019.
  • Charest, M. R., Ö. L. Gülder, and C. P. Groth. 2014. Numerical and experimental study of soot formation in laminar diffusion flames burning simulated biogas fuels at elevated pressures. Combust. Flame 161 (10):2678–91. doi:10.1016/j.combustflame.2014.04.012.
  • Charest, M. R., H. I. Joo, Ö. L. Gülder, and C. P. Groth. 2011. Experimental and numerical study of soot formation in laminar ethylene diffusion flames at elevated pressures from 10 to 35 atm. Proc. Combust. Inst. 33 (1):549–57. doi:10.1016/j.proci.2010.07.054.
  • Clarke, A. D., K. J. Noone, J. Heintzenberg, S. G. Warren, and D. S. Covert. 1967. Aerosol light absorption measurement techniques: Analysis and intercomparisons. Atmos. Environ. 21:1455–65. doi:10.1016/0004-6981(67)90093-5.
  • D’Anna, A., and J. H. Kent. 2006. Modeling of particulate carbon and species formation in coflowing diffusion flames of ethylene. Combust. Flame 144:249–60. doi:10.1016/j.combustflame.2005.07.011.
  • Frenklach, M. 2002. Method of moments with interpolative closure. Chem. Eng. Sci. 57:2229–39. doi:10.1016/S0009-2509(02)00113-6.
  • Frenklach, M., and S. J. Harris. 1987. Aerosol dynamics modeling using the method of moments. J. Colloid Interface Sci. 118:252–61. doi:10.1016/0021-9797(87)90454-1.
  • Goodson, M., and M. Kraft. 2002. An efficient stochastic algorithm for simulating nano-particle dynamics. J. Comput. Phys. 183:210–32. doi:10.1006/jcph.2002.7192.
  • Gordon, R. G. 1968. Error bounds in equilibrium statistical mechanics. J. Math. Phys. 9:655–63. doi:10.1063/1.1664624.
  • Griffin, E. A., M. Christensen, and Ö. L. Gülder. 2018. Effect of ethanol addition on soot formation in laminar methane diffusion flames at pressures above atmospheric. Combust. Flame 193:306–12. doi:10.1016/j.combustflame.2018.04.001.
  • Kennedy, I. M. 2007. The health effects of combustion-generated aerosols. Proc. Comb. Inst. 31:2757–70. doi:10.1016/j.proci.2006.08.116.
  • Köylü, Ü. Ö., G. Faeth, T. L. Farias, and M. G. Carvalho. 1995. Fractal and projected structure properties of soot aggregates. Combust. Flame 100 (4):621–33. doi:10.1016/0010-2180(94)00147-K.
  • Kumar, S., and D. Ramkrishna. 1996. On the solution of population balance equations by discretization i: A fixed pivot technique. Chem. Eng. Sci. 51:1311–32. doi:10.1016/0009-2509(96)88489-2.
  • Leung, K. M., R. P. Lindstedt, and W. P. Jones. 1991. A simplified reaction mechanism for soot formation in nonpremixed flames. Combust. Flame 87:289–305. doi:10.1016/0010-2180(91)90114-Q.
  • Liu, F., H. Guo, G. J. Smallwood, and Ö. L. Gülder. 2002. Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame. J. Quant. Spectrosc. Radiat. Transf. 73:409–21. doi:10.1016/S0022-4073(01)00205-9.
  • Madadi-Kandjani, E., and A. Passalacqua. 2015. An extended quadrature-based moment method with log-normal kernel density functions. Chem. Eng. Sci. 131:323–39. doi:10.1016/j.ces.2015.04.005.
  • Marchisio, D. L., J. T. Pikturna, R. O. Fox, R. D. Vigil, and A. A. Barresi. 2003. Quadrature method of moments for population-balance equations. AIChE J. 49:1266–76. doi:10.1002/(ISSN)1547-5905.
  • McGraw, R. 1997. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27:255–65. doi:10.1080/02786829708965471.
  • McGraw, R., and D. L. Wright. 2003. Chemically resolved aerosol dynamics for internal mixtures by the quadrature method of moments. J. Aerosol Sci. 34:189–209. doi:10.1016/S0021-8502(02)00157-X.
  • Menon, S., J. Hansen, L. Nazarenko, and Y. Luo. 2002. Climate effects of black carbon aerosols in china and india. Science 297:2255–2253. doi:10.1126/science.1075159.
  • Mueller, M. E., G. Blanquart, and H. Pitsch. 2009. Hybrid method of moments for modeling soot formation and growth. Combust. Flame 156:1143–55. doi:10.1016/j.combustflame.2009.01.025.
  • Patterson, R. I. A., J. Singh, M. Balthasar, M. Kraft, and W. Wagner. 2006. Extending stochastic soot simulation to higher pressures. Combust. Flame 145:638–42. doi:10.1016/j.combustflame.2006.02.005.
  • Pope, C. A., R. Burnett, M. Thun, E. Calle, D. Krewski, K. Ito, and G. Thurston. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–41. doi:10.1001/jama.287.9.1132.
  • Qamar, S., M. Elsner, I. Angelov, G. Warnecke, and A. Seidel-Morgenstern. 2006. A comparative study of high resolution schemes for solving population balances in crystallization. Chem. Eng. Sci. 30:1119–31.
  • Salenbauch, S., A. Cuoci, A. Frassoldati, C. Saggese, and T. Faravelli. 2015. Modeling soot formation in premixed flames using an extended conditional quadrature method of moments. Combust. Flame 162:2529–43. doi:10.1016/j.combustflame.2015.03.002.
  • Smooke, M. D., M. B. Long, B. C. Connelly, M. B. Colket, and R. J. Hall. 2005. Soot formation in laminar diffusion flames. Combust. Flame 143:613–28. doi:10.1016/j.combustflame.2005.08.028.
  • Sung, Y., V. Raman, H. Koo, M. Mehta, and R. O. Fox. 2014. Large eddy simulation modeling of turbulent flame synthesis of titania nanoparticles using a bivariate particle description. AIChE J. 60:459–72. doi:10.1002/aic.14279.
  • Wheeler, J. C. 1974. Modified moments and gaussian quadratures. Rocky Mt. J. Math. 4:287–96. doi:10.1216/RMJ-1974-4-2-287.
  • Wick, A., I.-T.-T. Nguyen, F. Laurent, R. O. Fox, and H. Pitsch. 2017. Modeling soot oxidation with the extended quadrature method of moments. Proc. Comb. Inst. 36:789–97. doi:10.1016/j.proci.2016.08.004.
  • Wright, D. L., R. McGraw, and D. E. Rosner. 2001. Bivariate extension of the quadrature method of moments for modeling simultaneous coagulation and sintering of particle populations. J. Colloid Interface Sci. 236:242–51. doi:10.1006/jcis.2000.7409.
  • Yuan, C., and R. O. Fox. 2011. Conditional quadrature method of moments for kinetic equations. J. Comput. Phys. 230:8216–46.
  • Yuan, C., F. Laurent, and R. O. Fox. 2012. An extended quadrature method of moments for population balance equations. J. Aerosol Sci. 51:1–23. doi:10.1016/j.jaerosci.2012.04.003.
  • Zhang, Q., H. Guo, F. Liu, G. J. Smallwood, and M. J. Thompson. 2008. Implementation of an advanced fixed sectional aerosol dynamics model with soot aggregate formation in a laminar methane/air coflow diffusion flame. Combust. Theor. Model. 12:621–41. doi:10.1080/13647830801966153.
  • Zhao, B., Z. Yang, Z. Li, M. V. Johnston, and H. Wang. 2005. Particle size distribution function of incipient soot in laminar premixed ethylene flames: Effect of flame temperature. Proceedings of the Combustion Institute, vol. 30, 1441–48. University of Illinois at Chicago, United States.
  • Zucca, A., D. L. Marchisio, A. A. Barresi, and R. O. Fox. 2006. Implementation of the population balance equation in cfd codes for modelling soot formation in turbulent flames. Chem. Eng. Sci. 61:87–95. doi:10.1016/j.ces.2004.11.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.