172
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A Maximum Entropy-Inspired Interpolative Closure for the Prediction of Radiative Heat Transfer in Laminar Co-Flow Diffusion Flames

, &
Pages 45-79 | Received 19 Jan 2019, Accepted 02 Oct 2019, Published online: 27 Oct 2019

References

  • Akih-Kumgeh, B. (2013, May). (Private correspondence)
  • Cernohorsky, J., and S. A. Bludman. 1994. Maximum entropy distribution and closure for bose-einstein and fermi-dirac radiation transport. Astrophys. J. 433:250. doi:10.1086/174640.
  • Charest, M. R., C. P.T. Groth, and Ö. L. Gülder. 2010. A computational framework for predicting laminar reactive flows with soot formation. Combust. Theor. Model. 14 (6):793–825. doi:10.1080/13647830.2010.512960.
  • Charest, M. R., C.P.T. Groth, and Ö. L. Gülder. 2011. Effects of gravity and pressure on laminar coflow methane–Air diffusion flames at pressures from 1 to 60 atmospheres. Combust. Flame 158 (5):860–75. doi:10.1016/j.combustflame.2011.01.019.
  • Charest, M. R., C. P.T. Groth, and Ö. L. Gülder. 2012. Solution of the equation of radiative transfer using a Newton-Krylov approach and adaptive mesh refinement. J. Comput. Phys. 231 (8):3023–40. doi:10.1016/j.jcp.2011.11.016.
  • Charest, M. R., H. I. Joo, Ö. L. Gülder, and C. P.T. Groth. 2011. Experimental and numerical study of soot formation in laminar ethylene diffusion flames at elevated pressures from 10 to 35 atm. Proc. Combust. Inst. 33 (1):549–57. doi:10.1016/j.proci.2010.07.054.
  • Charest, M. R., Ö. L.Gülder, and C.P.T. Groth. 2014. Numerical and experimental study of soot formation in laminar diffusion flames burning simulated biogas fuels at elevated pressures. Combust. Flame 161 (10):2678–91. doi:10.1016/j.combustflame.2014.04.012.
  • Dubroca, B., and J.-L. Feugeas. 1999. Theoretical and numerical study on a moment closure hierarchy for the radiative transfer equation. SIAM J. Numer. Anal. 329 (10):915–20.
  • Einfeldt, B. 1988. On Godunov-type methods for gas dynamics. SIAM J. Numerial. Anal. 25 (2):294–318. doi:10.1137/0725021.
  • Fairweather, M., W. P. Jones, and R. P. Lindstedt. 1992. Predictions of radiative transfer from a turbulent reacting jet in a cross-wind. CF 89:45–63.
  • Fiveland, W. A. 1984. Discrete-ordinates solutions of the radiative transport equation for rectangular enclosures. J. Heat Transfer 106 (4):699. doi:10.1115/1.3246741.
  • Gao, X., S. Northrup, and C.P. T. Groth. 2011. Parallel solution-adaptive method for two-dimensional non- premixed combusting flows. PCFD 11 (2):76. doi:10.1504/PCFD.2011.038834.
  • Godunov, S. K. 1959. A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47:357–93.
  • Goutiere, V., A. Charette, and L. Kiss. 2002. Comparative performance of nongray gas modeling techniques. Num HTB 41 (3–4):361–81.
  • Grad, H. 1949. On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2 (4):331–407. doi:10.1002/(ISSN)1097-0312.
  • Griffin, E. A., M. Christensen, and Ö. L. Gülder. 2018. Effect of ethanol addition on soot formation in laminar methane diffusion flames at pressures above atmospheric. Combust. Flame 193:306–12. doi:10.1016/j.combustflame.2018.04.001.
  • Groth, C. P. T., and S. A. Northrup (2005). Parallel implicit adaptive mesh refinement scheme for body-fitted multi-block mesh. 17th AIAA Computational Fluid Dynamics Conference, Toronto, Ontario, Canada.
  • Guo, H., F. Liu, G. J. Smallwood, and Ö. L. Gülder. 2002. The flame preheating effect on numerical modelling of soot formation in a two-dimensional laminar ethylene-air diffusion flame. CombTM 6:173–87.
  • Gupta, A., M. F. Modest, and D. C. Haworth. 2009. Large-eddy simulation of turbulence-radiation inter- actions in a turbulent planar channel flow. J. Heat Transfer 131 (6):061704. doi:10.1115/1.3085875.
  • Harten, A. 1983. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (3):357–93. doi:10.1016/0021-9991(83)90136-5.
  • Hirschfelder, J. O., C. F. Curtiss, and R. B. Byrd. 1969. Molecular theory of gases and liquids. New York: John Wiley & Sons.
  • Jaynes, E. T. 1957. Information theory and staistical mechanics. Phys. Rev. 106:620–30. doi:10.1103/PhysRev.106.620.
  • Jeans, J. H. 1917. The equations of radiative transfer of energy. Mon. Not. R. Astron. Soc. 78 (1):28–36. doi:10.1093/mnras/78.1.28.
  • Joo, H. I., and Ö. L. Gülder. 2009. Soot formation and temperature field structure in co-flow laminar methane-air diffusion flames at pressures from 10 to 60 atm. Proc. CI 32 (1):769–75.
  • Kennedy, I. M., W. Kollmann, and J. Y. Chen. 1990. A model for the soot formation in a laminar diffusion flame. CF 81:73–85.
  • Kuo, K. K. 2005. Principles of combustion. 2nd ed. New Jersey: John Wiley & Sons, Inc.
  • Lacis, A. A., and V. Oinas. 1991. A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res. 96 (D5):9027–63. doi:10.1029/90JD01945.
  • Lathrop, K. D., and B. G. Carlson (1965). Discrete ordinates angular quadrature of the neutron transport equation (Report No. LA-3186). Los Alamos Scientific Laboratory.
  • Leung, K. M., R. P. Lindstedt, and W. P. Jones. 1991. A simplified reaction mechanism for soot formation in nonpremixed flames. CF 87:289–305.
  • Levermore, C. 1984. Relating eddington factors to flux limiters. J. Quant. Spectrosc. Radiat. Transfer 31 (2):149–60. doi:10.1016/0022-4073(84)90112-2.
  • Li, G., and M. F. Modest. 2003. Importance of turbulence-radiation interactions in turbulent diffusion jet flames. J. Heat Transfer 125 (5):831. doi:10.1115/1.1597621.
  • Liu, F., G. J. Smallwood, and Ö. L. Gülder. 2000a. Application of the statistical narrow-band correlated- k method to low-resolution spectral intensity and radiative heat transfer calculations: Effects of the quadrature scheme. Int. J. Heat Mass Transf. 43 (17):3119–35. doi:10.1016/S0017-9310(99)00343-9.
  • Liu, F., G. J. Smallwood, and Ö. L. Gülder. 2000b. Band lumping strategy for radiation heat transfer calculations using a narrowband model. JTHT 14 (2):278–81.
  • Liu, F., H. Guo, G. J. Smallwood, and Ö. L. Gülder. 2002. Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame. J. Quant. Spectrosc. Radiat. Transfer 73:409–21. doi:10.1016/S0022-4073(01)00205-9.
  • Mazumder, S., and M. F. Modest. 1999. A probability density function approach to modeling turbulence- radiation interactions in nonluminous flames. Int. J. Heat Mass Transf. 42 (6):971–91. doi:10.1016/S0017-9310(98)00225-7.
  • Modest, M. F. 2013. Radiative heat transfer. 3rd ed. Academic Press.
  • Modest, M. F., and H. Zhang. 2002. The full-spectrum correlated-k distribution for thermal radiation from molecular gas-particulate mixtures. J. Heat Transfer 124 (1):30. doi:10.1115/1.1418697.
  • Modest, M. F., and R. S. Mehta. 2006. Modeling absorption tri in optically thick eddies. Proc. Eurotherm78 - Computational Therm. Radiat. Participating Media II 78:225–34.
  • Perera, F. P. 2016. Multiple threats to child health from fossil fuel combustion: Impacts of air pollution and climate change. Environ. Health Perspect. 125 (2). doi:10.1289/EHP36.
  • Pichard, T., G. W. Alldredge, S. Brull, B. Dubroca, and M. Frank. 2016. An approximation of the M2 closure: Application to radiotherapy dose simulation. J. Sci. Comput 71 (1):71–108.
  • Sachdev, J., C.P. T. Groth, and J. Gottlieb. 2005. A parallel solution-adaptive scheme for multi-phase core flows in solid propellant rocket motors. Int. J. Comut. Fluid. Dyn. 19 (2):159–77. doi:10.1080/10618560410001729135.
  • Sarr, J. A. R., C. P. T. Groth, and J. H. Hu (2019, October). A maximum entropy-inspired interpolative closures for the prediction of radiative heat transfer in non-gray participating media. submitted to the Journal of Quantitative Spectroscopy and Radiative Heat Transfer.
  • Smooke, M.D., C.S. McEnally, L.D. Pfefferle, R.J. Hall, and M. B. Colket. 1999. Computational and experimental study of soot formation in a coflow, laminar diffusion flame. CF 117:117–39.
  • Soufiani, A., and J. Taine. 1997. High temperature gas radiative property parameters of statistical narrow- band model for H2O, CO2 and CO, and correlated-k model for H2O and CO2. Int. J. Heat Mass Transf. 40 (4):987–91. doi:10.1016/0017-9310(96)00129-9.
  • Thurgood, C. P., A. Pollard, and H. A. Becker. 1995. TN quadrature set for the discrete ordinates method. JHT 117 (4):1068–70.
  • Turpault, R. 2002. Construction of a multigroup m1 model for the radiative transfer equations. C. R. Acad. Sci. Paris, Ser. I 334:331–36. doi:10.1016/S1631-073X(02)02265-3.
  • Turpault, R. 2005. A consistent multigroup model for radiative transfer and its underlying mean opacities. J. Quant. Spectrosc. Radiat. Transfer 94 (3–4):357–71. doi:10.1016/j.jqsrt.2004.09.042.
  • Viskanta, R., and M. P. Mengüç. 1987. Radiation heat transfer in combustion systems. Prog. ECS 13:97–160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.