169
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A Novel Group-based Correlation for the Ignition Delay Time of Paraffinic-type Fuels

, &
Pages 80-92 | Received 05 Feb 2019, Accepted 13 Sep 2019, Published online: 17 Oct 2019

References

  • Abdul Jameel, A., N. Naser, A.-H. Emwas, S. Dooley, and M. Sarathy. 2016. Predicting fuel ignition quality using 1H NMR spectroscopy and multiple linear regression. Energy Fuels 30 (11):9819−9835. doi:10.1021/acs.energyfuels.6b01690.
  • American Standard Test Method (ASTM) D2699-18. 2018. Standard test method for research octane number of spark-ignition engine fuel. West Conshohocken, US: ASTM International.
  • American Standard Test Method (ASTM) D2700-18. 2018. Standard test method for motor octane number of spark-ignition engine fuel. ASTM International.
  • American Standard Test Method (ASTM) D613-18. 2018. Standard test method for cetane number of diesel fuel oil. West Conshohocken, US: ASTM International.
  • American Standard Test Method (ASTM) D7668-17. 2014. Standard test method for determination of derived cetane number (DCN) of diesel fuel oils–Ignition delay and combustion delay using a constant volume combustion chamber method. West Conshohocken, US: ASTM International.
  • Assanis, D., Z. Filipi, S. Fiveland, and M. Syrimis. 2003. A predictive ignition delay correlation under steady-state and transient operation of a direct injection diesel engine. J. Eng. Gas Turbines Power 125 (2):450–57. doi:10.1115/1.1563238.
  • Biet, J., M. Hakka, V. Warth, P.-A. Glaude, and F. Battin-Leclerc. 2008. Experimental and modeling study of the low-temperature oxidation of large alkanes. Energy Fuels 22 (4):2258–69. doi:10.1021/ef8000746.
  • Davidson, D., S. Ranganath, K.-Y. Lam, M. Liaw, Z. Hong, and K. H. Ronald. 2010. Ignition delay time measurements of normal alkanes and simple oxygenates. J. Propul. Power 26 (2):280–87. doi:10.2514/1.44034.
  • Dussan, K., S. Won, A. Ure, F. Dryer, and S. Dooley. 2019. Chemical functional group descriptor for ignition propensity of large hydrocarbon liquid fuels. P. Combust. Inst. 37 (4):5083–93. doi:10.1016/j.proci.2018.05.079.
  • EN 16715:2015. 2015. Determination of ignition delay and derived cetane number DCN) of middle distillate fuels - Ignition delay and combustion delay determination using a constant volume combustion chamber with direct fuel injection.
  • Gan, S., H. Ng, and K. Pang. 2011. Homogeneous charge compression ignition HCCI) combustion: Implementation and effects on pollutants in direct injection diesel engines. Appl. Energ. 88 (3):559–67. doi:10.1016/j.apenergy.2010.09.005.
  • Heck, S., H. Pritchard, and J. Griffiths. 1998. Cetane number vs. structure in paraffin hydrocarbons. J. Chem. Soc., Faraday Trans. 94 (12):1725–27. doi:10.1039/A800861B.
  • Hernández, J. J., M. Lapuerta, and A. Cova-Bonillo. 2019. Autoignition reactivity of blends of diesel and biodiesel fuels with butanol isomers. J. Energ. Inst. 92 (4):1223–31. doi:10.1016/j.joei.2018.05.008.
  • Hernández, J. J., J. Sanz-Argent, J. Carot, and J. Jabaloyes. 2010. Ignition delay time correlations for a diesel fuel with application to engine combustion modelling. Int. J. Engine Res. 11 (99):199–206. doi:10.1243/14680874JER06209.
  • Kang, D., S. Bohac, A. Boehman, S. Cheng, Y. Yang, and M. Brear. 2017. Autoignition studies of C5 isomers in a motored engine. Proc. Combust. Inst. 36 (7):3597–604. doi:10.1016/j.proci.2016.09.012.
  • Kumar, P., and A. Rehman. 2016. Bio-diesel in homogeneous charge compression ignition HCCI) combustion. Renew. Sust. Energ. Rev. 56:536–50. doi:10.1016/j.rser.2015.11.088.
  • Lapuerta, M., J. J. Hernández, D. Fernández-Rodríguez, and A. Cova-Bonillo. 2017. Autoignition of blends of n-butanol and ethanol with diesel or biodiesel fuels in a constant-volume combustion chamber. Energy 118 (1):613–21. doi:10.1016/j.energy.2016.10.090.
  • Lapuerta, M., J. J. Hernández, and M. Sarathy. 2016. Effects of methyl substitution on the auto-ignition of C16 alkanes. Combust. Flame 164:259–69. doi:10.1016/j.combustflame.2015.11.024.
  • Lapuerta, M., J. Sanz-Argent, and R. Raine. 2014a. Ignition characteristics of diesel fuel in a constant volume bomb under diesel-like conditions. Effect of the operation parameters. Energy Fuels 28 (8):5445–54. doi:10.1021/ef500535j.
  • Lapuerta, M., J. Sanz-Argent, and R. Raine. 2014b. Heat release determination in a constant volume combustion chamber from the instantaneous cylinder pressure. Appl. Therm. Eng. 63 (22):520–27. doi:10.1016/j.applthermaleng.2013.11.044.
  • Lapuerta, M., M. Villajos, J. Agudelo, and A. Boehman. 2011. Key properties and blending strategies of hydrotreated vegetable oil as biofuel for diesel engines. Fuel Process. Technol. 92 (12):2406–11. doi:10.1016/j.fuproc.2011.09.003.
  • Li, S., A. Campos, D. Davidson, and R. Hanson. 2014. Shock tube measurements of branched alkane ignition delay times. Fuel 118 (15):398–405. doi:10.1016/j.fuel.2013.11.028.
  • Lia, J., W. Yang, and D. Zhou. 2017. Review on the management of RCCI engines. Renewable Sustainable Energy Rev. 69:65–79. doi:10.1016/j.rser.2016.11.159.
  • Matthews, L., A. Niziolek, O. Onel, N. Pinnaduwage, and C. Floudas. 2016. Biomass to liquid transportation fuels via biological and thermochemical conversion: Process synthesis and global optimization strategies. Ind. Eng. Chem. Res. 55 (12):3203−3225. doi:10.1021/acs.iecr.5b03319.
  • Minetti, R., M. Ribaucour, M. Carlier, and L. R. Soch. 1996. Autoignition delays of a series of linear and branched chain alkanes in the intermediate range of temperature. Combust. Sci. Technol. 113 (1):179–92. doi:10.1080/00102209608935493.
  • Musculus, M., P. Miles, and L. Pickett. 2013. Conceptual models for partially premixed low-temperature diesel combustion. Prog. Energy Combust. Sci. 39 (2–3):246–83. doi:10.1016/j.pecs.2012.09.001.
  • Poling, B. E., J. M. Praunitz, and J. P. O’Conell. 2000. The properties of gases and liquids. Fourth ISBN: 0-07-051799-1 New York: McGraw-Hill.
  • Sarathy, M., C. Westbrook, M. Mehl, W. Pitz, C. Togbe, P. Dagaut, H. Wang, M. Oehlschlaeger, U. Niemann, K. Seshadri, et al. 2011a. Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20. Combust. Flame 158 (12):2338–57. doi:10.1016/j.combustflame.2011.05.007.
  • Sarathy, M., C. Yeung, C. Westbrook, W. Pitz, M. Mehl, and M. Thomson. 2011b. An experimental and kinetic modeling study of n-octane and 2-methylheptane in an opposed-flow diffusion flame. Combust. Flame 158 (7):1277–87. doi:10.1016/j.combustflame.2010.11.008.
  • Silke, E., H. Curran, and J. Simmie. 2005. The influence of fuel structure on combustion as demonstrated by the isomers of heptane: A rapid compression machine study. Proc. Combust. Inst. 30 (2):2639–47. doi:10.1016/j.proci.2004.08.180.
  • Sonthalia, A., and N. Kumar. 2019. Hydroprocessed vegetable oil as a fuel for transportation sector: A review. J. Energy Inst. 92 (1):1–17. doi:10.1016/j.joei.2017.10.008.
  • Tanaka, S., F. Ayala, J. Keck, and J. Heywood. 2003. Two-stage ignition in HCCI combustion and HCCI control by fuels and additives. Combust. Flame 132 (1):219–39. doi:10.1016/S0010-2180(02)00457-1.
  • Tekawade, A., and M. Oehlschlaeger. 2016. An experimental study of the spray ignition of alkanes. Fuel 185 (1):381–93. doi:10.1016/j.fuel.2016.07.108.
  • Viswanath, D. S., and N. R. Kuloor. 1967. On a generalized Watson’s relation for latent heat of vaporisation. Can. J. Chem. Eng. 45 (1):29–31. doi:10.1002/cjce.5450450107.
  • Walker, R. W., and C. Morley. 1997. Basic chemistry of combustion. In Low-Temperature Combustion and Autoignition, Elsevier, Amsterdam, ISSN: 0069-8040, 1–124. doi: 10.1016/S0069-8040(97)80016-7.
  • Wang, W., Z. Li, M. A. Oehlschlaeger, D. Healy, H. Curran, M. Sarathy, M. Mehl, W. Pitz, and C. Westbrook. 2013. An experimental and modeling study of the autoignition of 3-methylheptane. Proc. Combust. Inst. 34 (1):335–43. doi:10.1016/j.proci.2012.06.001.
  • Won, S., S. Dooley, P. Veloo, H. Wang, M. Oehlschlaeger, F. Dryer, and Y. Ju. 2014. The combustion properties of 2,6,10-trimethyl dodecane and a chemical functional group analysis. Combust. Flame 161 (3):826–34. doi:10.1016/j.combustflame.2013.08.010.
  • Wood, D., C. Nwaoha, and B. Towler. 2012. Gas-to-liquids GTL): A review of an industry offering several routes for monetizing natural gas. J. Nat. Gas Sci. Eng. 9:196–208. doi:10.1016/j.jngse.2012.07.001.
  • Zádor, J., C. Taatjes, and R. Fernandes. 2011. Kinetics of elementary reactions in low-temperature autoignition chemistry. Prog. Energy Combust. Sci. 37 (4):371–421. doi:10.1016/j.pecs.2010.06.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.