1,124
Views
27
CrossRef citations to date
0
Altmetric
Research Article

On the Oxidation of Ammonia and Mutual Sensitization of the Oxidation of No and Ammonia: Experimental and Kinetic Modeling

Pages 117-129 | Received 16 Jan 2019, Accepted 05 Aug 2019, Published online: 13 Oct 2019

References

  • Bromly, J. H., F. J. Barnes, S. Muris, X. You, and B. S. Haynes. 1996. Kinetic and thermodynamic sensitivity analysis of the NO-sensitised oxidation of methane. Combust. Sci. Technol. 115:259–96. doi:10.1080/00102209608935532.
  • Dagaut, P., M. Cathonnet, J. P. Rouan, R. Foulatier, A. Quilgars, J. C. Boettner, F. Gaillard, and H. James. 1986. A jet-stirred reactor for kinetic-studies of homogeneous gas-phase reactions at pressures up to 10-atmospheres (~ 1 MPa). J. Phys. E-Scientific Instrum. 19 (3):207–09. doi:10.1088/0022-3735/19/3/009.
  • Dagaut, P., and G. Dayma. 2006. Mutual Sensitization of the oxidation of nitric oxide and a natural gas blend in a JSR at elevated pressure: Experimental and detailed kinetic modeling study. J. Phys. Chem. A 110 (21):6608–16. doi:10.1021/jp054535w.
  • Dagaut, P., P. Glarborg, and M. U. Alzueta. 2008. The oxidation of hydrogen cyanide and related chemistry. Prog. Energy Combust. Sci. 34 (1):1–46. doi:10.1016/j.pecs.2007.02.004.
  • Dagaut, P., F. Lecomte, S. Chevailler, and N. Cathonnet. 1999. Mutual sensitization of the oxidation of nitric oxide and simple fuels over an extended temperature range: Experimental and detailed kinetic modeling. Combust. Sci. Technol. 148 (1–6):27–57. doi:10.1080/00102209908935771.
  • Dagaut, P., J. Luche, and M. Cathonnet. 2001. The low temperature oxidation of DME and mutual sensitization of the oxidation of DME and nitric oxide: Experimental and detailed kinetic modeling. Combust. Sci. Technol. 165:61–84. doi:10.1080/00102200108935826.
  • Dagaut, P., O. Mathieu, A. Nicolle, and G. Dayma. 2005. Experimental study and detailed kinetic modeling of the mutual sensitization of the oxidation of nitric oxide, ethylene, and ethane. Combust. Sci. Technol. 177 (9):1767–91. doi:10.1080/00102200590959486.
  • Dagaut, P., and A. Nicolle. 2005a. Experimental and kinetic modeling study of the effect of SO2 on the reduction of NO by ammonia. Proc. Combust. Inst. 30 (1):1211–18. doi:10.1016/j.proci.2004.07.029.
  • Dagaut, P., and A. Nicolle. 2005b. Experimental and kinetic modeling study of the effect of sulfur dioxide on the mutual sensitization of the oxide and methane. Int. J. Chem. Kinet. 37 (7):406–13. doi:10.1002/kin.20100.
  • Dagaut, P., and A. Nicolle. 2005c. Experimental study and detailed kinetic modeling of the effect of exhaust gas on fuel combustion: Mutual sensitization of the oxidation of nitric oxide and methane over extended temperature and pressure ranges. Combust. Flame 140 (3):161–71. doi:10.1016/j.combustflame.2004.11.003.
  • Dayma, G., K. Hadj Ali, and P. Dagaut. 2007. Experimental and detailed kinetic modeling study of the high pressure oxidation of methanol sensitized by nitric oxide and nitrogen dioxide. Proc. Combust. Inst. 31 (1):411–18. doi:10.1016/j.proci.2006.07.143.
  • Glarborg, P., R. J. Kee, J. F. Grcar, and J. A. Miller. 1986. PSR: A FORTRAN program for modeling well-stirred reactors, SAND86-8209, SAND86-8209. Livermore, CA: Sandia National Laboratories.
  • Hayakawa, A., T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, and H. Kobayashi. 2015. Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures. Fuel 159:98–106. doi:10.1016/j.fuel.2015.06.070.
  • Javed, M. T., Z. Ahmed, M. A. Ibrahim, and N. Irfan. 2008. A comparative kinetic study of SNCR process using ammonia. Braz. J. Chem. Eng. 25 (1):109–17. doi:10.1590/S0104-66322008000100012.
  • Kobayashi, H., A. Hayakawa, K. D. Somarathne, A. Kunkuma, and E. C. Okafor. 2019. Science and technology of ammonia combustion. Proc. Combust. Inst. 37 (1):109–33. doi:10.1016/j.proci.2018.09.029.
  • Konnov, A. A. 2009. Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism. Combust. Flame 156 (11):2093–105. doi:10.1016/j.combustflame.2009.03.016.
  • Konnov, A. A., F. J. Barnes, J. H. Bromly, J. N. Zhu, and D. K. Zhang. 2005. The pseudo-catalytic promotion of nitric oxide oxidation by ethane at low temperatures. Combust. Flame 141 (3):191–99. doi:10.1016/j.combustflame.2005.01.003.
  • Kurata, O., N. Iki, T. Matsunuma, T. Inoue, T. Tsujimura, H. Furutani, H. Kobayashi, and A. Hayakawa. 2017. Performances and emission characteristics of NH3–Air and NH3CH4–Air combustion gas-turbine power generations. Proc. Combust. Inst. 36 (3):3351–59. doi:10.1016/j.proci.2016.07.088.
  • Le Cong, T., P. Dagaut, and G. Dayma. 2008. Oxidation of natural gas, natural gas/syngas mixtures, and effect of burnt gas recirculation: Experimental and detailed kinetic modeling. J. Eng. Gas Turbines Power 130 (4):041502–10. doi:10.1115/1.2901181.
  • Mathieu, O., and E. L. Petersen. 2015. Experimental and modeling study on the high-temperature oxidation of ammonia and related NOx chemistry. Combust. Flame 162 (3):554–70. doi:10.1016/j.combustflame.2014.08.022.
  • Mei, B., X. Zhang, S. Ma, and Y. Li. 2019. Investigation on laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions, 12th Asia-Pacific Conference on Combustion, Fukuoka, Japan.
  • Miller, J. A., and C. T. Bowman. 1989. Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 15 (4):287–338. doi:10.1016/0360-1285(89)90017-8.
  • Miller, J. A., and P. Glarborg. 1999. Modeling the thermal De-NOx process: Closing in on a final solution. Int. J. Chem. Kinet. 31 (11):757–65. doi:10.1002/(SICI)1097-4601(1999)31:11<>1.0.CO;2-K.
  • Nakamura, H., and S. Hasegawa. 2017. Combustion and ignition characteristics of ammonia/air mixtures in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst. 36 (3):4217–26. doi:10.1016/j.proci.2016.06.153.
  • Otomo, J., M. Koshi, T. Mitsumori, H. Iwasaki, and K. Yamada. 2018. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion. Int. J. Hydrogen Energy 43 (5):3004–14. doi:10.1016/j.ijhydene.2017.12.066.
  • Pfahl, U. J., M. C. Ross, J. E. Shepherd, K. O. Pasamehmetoglu, and C. Unal. 2000. Flammability limits, ignition energy, and flame speeds in H2–CH4–NH3–N2O–O2–N2 mixtures. Combust. Flame 123 (1):140–58. doi:10.1016/S0010-2180(00)00152-8.
  • Ronney, P. D. 1988. Effect of chemistry and transport properties on near-limit flames at microgravity. Combust. Sci. Technol. 59 (1–3):123–41. doi:10.1080/00102208808947092.
  • Schmidt, C. C., and C. T. Bowman. 2001. Flow reactor study of the effect of pressure on the thermal De-NOx process. Combust. Flame 127 (1–2):1958–70. doi:10.1016/S0010-2180(01)00300-5.
  • Sivaramakrishnan, R., K. Brezinsky, G. Dayma, and P. Dagaut. 2007. High pressure effects on the mutual sensitization of the oxidation of NO and CH4-C2H6 blends. Phys. Chem. Chem. Phys. 9 (31):4230–44. doi:10.1039/b703379f.
  • Skreiberg, Ø., P. Kilpinen, and P. Glarborg. 2004. Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor. Combust. Flame 136 (4):501–18. doi:10.1016/j.combustflame.2003.12.008.
  • Song, Y., H. Hashemi, J. M. Christensen, C. Zou, P. Marshall, and P. Glarborg. 2016. Ammonia oxidation at high pressure and intermediate temperatures. Fuel 181:358–65. doi:10.1016/j.fuel.2016.04.100.
  • Takizawa, K., A. Takahashi, K. Tokuhashi, S. Kondo, and A. Sekiya. 2008. Burning velocity measurements of nitrogen-containing compounds. J. Hazard. Mater. 155 (1):144–52. doi:10.1016/j.jhazmat.2007.11.089.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.