774
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Investigation on the Flame Front and Flow Field in Acoustically Excited Swirling Flames with and without Confinement

, , , &
Pages 130-143 | Received 18 Jan 2019, Accepted 09 Oct 2019, Published online: 14 Oct 2019

References

  • Allison, P. M., Y. Chen, M. Ihme, and J. F. Driscoll. 2015. Coupling of flame geometry and combustion instabilities based on kilohertz formaldehyde PLIF measurements. Proc. Comb. Inst. 35 (3):3255–62. doi:10.1016/j.proci.2014.05.127.
  • Bellows, B. D., M. K. Bobba, A. Forte, J. M. Seitzman, and T. Lieuwen. 2007. Flame transfer function saturation mechanisms in a swirl-stabilized combustor. Proc. Comb. Inst. 31 (2):3181–88. doi:10.1016/j.proci.2006.07.138.
  • Bellows, B. D., M. K. Bobba, J. M. Seitzman, and T. Lieuwen. 2006. Nonlinear flame transfer function characteristics in a swirl-stabilized combustor. J. Eng. Gas Turbines Power 129 (4):954–61. doi:10.1115/1.2720545.
  • Birbaud, A. L., D. Durox, S. Ducruix, and S. Candel. 2007. Dynamics of confined premixed flames submitted to upstream acoustic modulations. Proc. Comb. Inst. 31 (1):1257–65. doi:10.1016/j.proci.2006.07.122.
  • Boxx, I., M. Stöhr, C. Carter, and W. Meier. 2010. Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor. Combust. Flame 157 (8):1510–25. doi:10.1016/j.combustflame.2009.12.015.
  • Bunce, N. A., B. D. Quay, and D. A. Santavicca. 2013. Interaction between swirl number fluctuations and vortex shedding in a single-nozzle turbulent swirling fully-premixed combustor. J. Eng. Gas Turbines Power 136 (2):021503–11. doi:10.1115/1.4025361.
  • Candel, S., D. Durox, T. Schuller, J.-F. Bourgouin, and J. P. Moeck. 2014. Dynamics of swirling flames. Annu. Rev. Fluid Mech. 46 (1):147–73. doi:10.1146/annurev-fluid-010313-141300.
  • Chakravarthy, S. R., R. Sampath, and V. Ramanan. 2017. Dynamics and diagnostics of flame-acoustic interactions. Comb. Sci. Tech. 189 (3):395–437. doi:10.1080/00102202.2016.1202938.
  • Cuquel, A., D. Durox, and T. Schuller. 2013. Scaling the flame transfer function of confined premixed conical flames. Proc. Comb. Inst. 34 (1):1007–14. doi:10.1016/j.proci.2012.06.056.
  • De Rosa, A. J., S. J. Peluso, B. D. Quay, and D. A. Santavicca. 2015. The effect of confinement on the structure and dynamic response of lean-premixed, swirl-stabilized flames. J. Eng. Gas Turbines Power 138 (6):061507. doi:10.1115/1.4031885.
  • De Rosa, A. J., S. J. Peluso, B. D. Quay, and D. A. Santavicca. 2017. Lean-premixed, swirl-stabilized flame response: Flame structure and response as a function of confinement. J. Eng. Gas Turbines Power 140 (3):031504. doi:10.1115/1.4037925.
  • Fu, Y., J. Cai, S.-M. Jeng, and H. Mongia. Confinement effects on the swirling flow of a counter-rotating swirl cup. ASME Turbo Expo 2005: Power for Land, Sea, and Air, 2005 Reno, Nevada, USA. GT2005-68622, pp469–78.
  • Fugger, C. A., S. Roy, A. W. Caswell, B. A. Rankin, and J. R. Gord. 2018. Structure and dynamics of CH2O, OH, and the velocity field of a confined bluff-body premixed flame, using simultaneous PLIF and PIV at 10 kHz. Proc. Comb. Inst. 37 (2):1461–69. doi:10.1016/j.proci.2018.05.014.
  • Giezendanner, R., O. Keck, P. Weigand, W. Meier, U. Meier, W. Stricker, and M. Aigner. 2003. Periodic combustion instabilities in a swirl burner studied by phase-locked planar laser-induced fluorescence. Comb. Sci. Tech. 175 (4):721–41. doi:10.1080/00102200302390.
  • Huang, Y., and V. Yang. 2009. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35 (4):293–364. doi:10.1016/j.pecs.2009.01.002.
  • Lieuwen, T. C. 2014. Unsteady combustor physics. New York, USA: Cambridge University Press.
  • Liu, X., G. Wang, J. Zheng, L. Xu, S. Wang, L. Li, and F. Qi. 2018. Temporally resolved two dimensional temperature field of acoustically excited swirling flames measured by mid-infrared direct absorption spectroscopy. Opt. Express 26 (24):31983–94. doi:10.1364/OE.26.031983.
  • Meier, W., P. Weigand, X. R. Duan, and R. Giezendanner-Thoben. 2007. Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combust. Flame 150 (1):2–26. doi:10.1016/j.combustflame.2007.04.002.
  • Palies, P., D. Durox, T. Schuller, and S. Candel. 2010. The combined dynamics of swirler and turbulent premixed swirling flames. Combust. Flame 157 (9):1698–717. doi:10.1016/j.combustflame.2010.02.011.
  • Poinsot, T. 2017. Prediction and control of combustion instabilities in real engines. Proc. Comb. Inst. 36 (1):1–28. doi:10.1016/j.proci.2016.05.007.
  • Ranalli, J., and D. Ferguson. 2012. Measurement of flame frequency response functions under exhaust gas recirculation conditions. J. Eng. Gas Turbines Power 134 (9):091502-091502-10. doi:10.1115/1.4006877.
  • Stöhr, M., I. Boxx, C. D. Carter, and W. Meier. 2012. Experimental study of vortex-flame interaction in a gas turbine model combustor. Combust. Flame 159 (8):2636–49. doi:10.1016/j.combustflame.2012.03.020.
  • Wabel, T. M., A. W. Skiba, J. E. Temme, and J. F. Driscoll. 2017. Measurements to determine the regimes of premixed flames in extreme turbulence. Proc. Comb. Inst. 36 (2):1809–16. doi:10.1016/j.proci.2016.08.065.
  • Wang, G., X. Liu, S. Wang, L. Li, and F. Qi. 2019. Experimental investigation of entropy waves generated from acoustically excited premixed swirling flame. Combust. Flame 204:85–102. doi:10.1016/j.combustflame.2019.03.005.
  • Weigand, P., W. Meier, X. R. Duan, W. Stricker, and M. Aigner. 2006. Investigations of swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature, and species distributions. Combust. Flame 144 (1):205–24. doi:10.1016/j.combustflame.2005.07.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.