224
Views
6
CrossRef citations to date
0
Altmetric
Research Article

A Methodology for Predicting Temperature Distribution inside Concrete Pavement under A Pool Fire

, , , & ORCID Icon
Pages 911-930 | Received 21 May 2019, Accepted 07 Oct 2019, Published online: 21 Oct 2019

References

  • Adkins, D. F., and G. P. Merkley. 1990. Mathematical model of temperature changes in concrete pavements. J. Transp. Eng. 116 (3):349–58. doi:10.1061/(ASCE)0733-947X(1990)116:3(349).
  • Ail, S. S., and S. Dasappa. 2016. Biomass to liquid transportation fuel via Fischer Tropsch synthesis – Technology review and current scenario. Renew. Sust. Energy. Rev. 58:267–86. doi:10.1016/j.rser.2015.12.143.
  • ANSYS Fluent 15.0 Theory User’s Guide. 2014. ANSYS, Kerry: SAS, IP Inc.
  • Bailey, C. G., and E. Ellobody. 2009. Fire tests on bonded post-tensioned concrete slabs. Eng. Struct. 31 (3):686–96. doi:10.1016/j.engstruct.2008.11.009.
  • Bamonte, R. B. P., N. Kalaba, and R. Felecetti. 2018. Computational study on prestressed concrete members exposed to natural fires. Fire Safety J. 97:54–65. doi:10.1016/j.firesaf.2018.02.006.
  • Barber, E. S. 1957. Calculation of maximum pavement temperatures from weather reports. Bulletin 168, HRB, 1–8. Washington, D.C.: National Research Council.
  • Beeby, A. W., R. S. Narayanan, and R. Narayanan. 1995. Designers’ Handbook to Eurocode 2: 1.Design of concrete structures. New York: Thomas Telford.
  • Bergman, T. L., F. P. Incropera, D. P. DeWitt, and A. S. Lavine. 2011. Fundamentals of heat and mass transfer. New Jersey: John Wiley & Sons.
  • Chatris, J. M., J. Quintela, J. Folch, E. Planas, J. Arnaldos, and J. Casal. 2001. Experimental study of burning rate in hydrocarbon pool fires. Combust. Flame 126 (1–2):1373–83. doi:10.1016/S0010-2180(01)00262-0.
  • Chen, C. K. 2013. Combustion. Beijing: China Machine Press.
  • Cooke, G. M. E. 2001. Behaviour of precast concrete floor slabs exposed to standardized fires. Fire Safety J. 36 (5):459–75. doi:10.1016/S0379-7112(01)00005-4.
  • Ditch, B. D., J. L. de Ris, T. K. Blanchat, M. Chaos, R. G. Bill Jr, and S. B. Dorofeev. 2013. Pool fires–An empirical correlation. Combust. Flame 160 (12):2964–74. doi:10.1016/j.combustflame.2013.06.020.
  • Fan, C. G., J. Ji, Y. Z. Li, H. Ingason, and J. H. Sun. 2017. Experimental study of sidewall effect on flame characteristics of heptane pool fires with different aspect ratios and orientations in a channel. Proc. Combust. Inst. 36:3121–3129.
  • Fan, C. G., J. Ji, Z. H. Gao, J. Y. Han, and J. H. Sun. 2013. Experimental study of air entrainment mode with natural ventilation using shafts in road tunnel fires. Int. J. Heat Mass Trans. 56:750–757.
  • Fluent User’s Guide, Version 6.3. 2009. ANSYS, Kerry: SAS IP Inc.
  • Garo, J. P., P. Gillard, J. P. Vantelon, and A. C. Fernandez-Pello. 1999. Combustion of liquid fuels spilled on water. Prediction of time to start of boilover. Combust. Sci. Technol. 147 (1–6):39–59. doi:10.1080/00102209908924211.
  • Geng, J., Q. Sun, W. Zhang, and C. Lu. 2016. Effect of high temperature on mechanical and acoustic emission properties of calcareous-aggregate concrete. Appl. Therm. Eng. 106:1200–08. doi:10.1016/j.applthermaleng.2016.06.107.
  • Hamins, A., T. Kashiwagi, and R. R. Buch. 1996. Characteristics of pool fire burning//Fire resistance of industrial fluids. West Conshohocken: ASTM International.
  • Hermansson, A. 2000. Simulation Model for Calculating Pavement Temperatures Including Maximum Temperature. Transportation Research Record: Journal of the Transportation Research Board, 1699 (1): 134–141.
  • Heskestad, G. 1984. Engineering relations for fire plumes. Fire Safety J. 7 (1):25–32. doi:10.1016/0379-7112(84)90005-5.
  • Hu, L., J. Hu, S. Liu, W. Tang, and X. Zhang. 2015. Evolution of heat feedback in medium pool fires with cross air flow and scaling of mass burning flux by a stagnant layer theory solution. Proc. Combust. Inst. 35 (3):2511–18. doi:10.1016/j.proci.2014.06.074.
  • Hu, L. H. 2017. A review of physics and correlations of pool fire behaviour in wind and future challenges. Fire Safety J. 91:41–55. doi:10.1016/j.firesaf.2017.05.008.
  • Hurley, M. J. 2015. SFPE handbook of fire protection engineering. New York: Springer-Verlag.
  • Inamura, T., K. Saito, and K. A. Tagavi. 1992. A study of boilover in liquid pool fires supported on water. Part II: Effects of in-depth radiation absorption. Combust. Sci. Technol. 86 (1–6):105–19. doi:10.1080/00102209208947190.
  • Ingason, H. 2009. Design fire curves for tunnels. Fire Safety J. 44 (2):259–65. doi:10.1016/j.firesaf.2008.06.009.
  • Ingason, H., Y. Z. Li, and A. Lönnermark. 2014. New York: Tunnel fire dynamics. Springer.
  • Jason, F., F. Glenn, and H. Simo. 2012. Fire Dynamics Simulator, Version 6, User’s Guide. Gaithersburg: Fire Research Division.
  • Ji, J., C. G. Fan, W. Zhong, X. B. Shen, and J. H. Sun. 2012. Experimental investigation on influence of different transverse fire locations on maximum smoke temperature under the tunnel ceiling. Int. J. Heat Mass Trans. 55:4817–4826.
  • JTG D 40-2011. 2011. Specifications for design of highway cement concrete pavement, China Communications Press.
  • Kang, Q. 2009. Study on unsteady combustion characteristics and thermal feedback of small-scale oil pool fire. Beijing: University of Science and Technology.
  • Klein, R. A. 1997. SFPE Handbook of Fire Protection Engineering (1995). Fire Safety J. 1 (29):61–63. doi:10.1016/S0379-7112(97)00022-2.
  • Kuang, C., L. Hu, X. Zhang, Y. Lin, and L. W. Kostiuk. 2019. An experimental study on the burning rates of n-heptane pool fires with various lip heights in cross flow. Combust. Flame 201:93–103. doi:10.1016/j.combustflame.2018.12.011.
  • Kumar, P., and V. K. R. Kodur. 2017. Modeling the behavior of load bearing concrete walls under fire exposure. Constr. Build. Mater. 154:993–1003. doi:10.1016/j.conbuildmat.2017.08.010.
  • Kuo, K. K. 2005. Principles of combustion. New Jersey: John Wiley & Sons Inc.
  • Liu, G., L. Ma, and J. Liu. 2002. Chemical and chemical physical properties data manual (Organic Volume), Beijing: Chemical Industry Publishing House Beijing.
  • Liu, W., F. Deng and Y. Liu. 2003. Cold Change Equipment Process Calculation Manual. Beijing: China Petrochemical Press.
  • Lockwood, R. W., and R. C. Corlett. 1987. Radiative and convective feedback heat flux in small turbulent pool fires with variable pressure and ambient oxygen. Proceedings of the 1987 ASME–JSME Thermal Engineering Joint Conference, New York: American Society of Mechanical Engineers.
  • Lu, Z. 1989. Study on the response of reinforced concrete beams to fire 46. Shanghai: Tongji University.
  • Maanser, A., A. Benouis, and N. Ferhoune. 2018. Effect of high temperature on strength and mass loss of admixture concretes, Constr. Build. Mater 166:916–21. doi:10.1016/j.conbuildmat.2018.01.181.
  • McCaffrey, B. J. 1983. Momentum implications for buoyant diffusion flames. Combust. Flame 52:149–67. doi:10.1016/0010-2180(83)90129-3.
  • Modak, A. T., and P. A. Croce. 1977. Plastic pool fires. Combust. Flame 30:251–65. doi:10.1016/0010-2180(77)90074-8.
  • Mudan, K. S. 1984. Thermal radiation hazards from hydrocarbon pool fires. Prog. Energy. Combust. Sci. 10 (1):59–80. doi:10.1016/0360-1285(84)90119-9.
  • Ndubizu, C. C., D. E. Ramaker, P. A. Tatem, and F. W. Williams. 1983. A model of freely burning pool fires. Combust. Sci. Technol. 31 (5–6):233–47. doi:10.1080/00102208308923644.
  • NFPA 92A. 2009. Recommended Practice Smoke-Control Systems. Quincy: National Fire Protection Association.
  • Novak, J., and A. Kohoutkova. 2018. Mechnical properties of concrete composites subject to elevated temperature. Fire Safety J. 95:66–76. doi:10.1016/j.firesaf.2017.10.010.
  • Puente, E., D. Lázaro, and D. Alvear. 2016. Study of tunnel pavements behaviour in fire by using coupled cone calorimeter-FTIR analysis. Fire Safety J. 81:1–7. doi:10.1016/j.firesaf.2016.01.010.
  • Quintiere, J. G. 2006. Fundamentals of fire phenomena. Chichester: John Wiley.
  • Raj, P. K. 2016. A flammability (risk) index for use in transportation of flammable liquids. J. Loss Prevent. Proc. 44:755–63. doi:10.1016/j.jlp.2016.10.001.
  • Schackow, A., C. Effting, I. R. Gomes, I. Z. Patruni, F. Vicenzi, and C. Kramel. 2016. Temperature variation in concrete samples due to cement hydration. Appl. Therm. Eng. 103:1362–69. doi:10.1016/j.applthermaleng.2016.05.048.
  • Spalding, D. B. 1987. The combustion of liquid fuels. London: Imperial College London University of London.
  • Straub, A. L., H. N. Schenck Jr, and F. E. Przbycien. 1968. Bituminous pavement temperature related to climate. Highw. Res. Rec. 256:53–77.
  • Strehlow, R. A. 1984. Combustion Fundamentals. New York: McGraw-Hill Book Company.
  • Tao, W., H. Lin and C. Li. 1995. Research and development of heat transfer. Beijing: Higher Education Press. 271–78.
  • Vali, A. 2014. Investigation of the transport phenomena within the liquid phase of a methanol pool fire. Ph. D. Thesis, Canada: University of Alberta.
  • Wang, Y., G. Yuan, Z. Huang, J. Lyu, Q. Li, and B. Long. 2018. Modelling of reinforce concrete slabs in fire. Fire Safety J. 100:171–85. doi:10.1016/j.firesaf.2018.08.005.
  • Wayner, P. C., Jr, Y. K. Kao, and L. V. LaCroix. 1976. The interline heat-transfer coefficient of an evaporating wetting film. Int. J. Heat Mass Trans. 19 (5):487–92. doi:10.1016/0017-9310(76)90161-7.
  • Williams, A. 1973. Combustion of droplets of liquid fuels: A review. Combust. Flame 21 (1):1–31. doi:10.1016/0010-2180(73)90002-3.
  • Wu, D. X. 2013. Fire smoke control in road tunnels-research on multi-point smoke extraction system with special exhaust duct. Beijing: China Communications Press.
  • Yang, S. M., and W. Tao. 2006. Heat Transfer. Fourth ed. Beijing: Higher Education Press.
  • Yi, L., R. Huo, J. Zhang, Y. Li and H. Zhang. 2006. Diesel oil pool fire power characteristics. J. Combust. Sci. Technol. 12 (2): 164–68. In Chinese.
  • Zhang, H. Y., V. Kodur, B. Wu, J. Yan, and Z. S. Yuan. 2018. Effect of temperature on bond characteristics of geopolymer concrete. Constr. Build. Mater 163:277–85. doi:10.1016/j.conbuildmat.2017.12.043.
  • Zhang, J., Z. Liu, and W. Liu. 2007. Experimental study on natural convective heat transfer coefficient of concrete surface. Sichuan Build. Sci. 33 (5):143–46. In Chinese.
  • Zhou, Y., R. Bu, J. Gong, and C. Fan. 2018b. Experimental investigation on downward flame spread over rigid polyurethane and extruded polystyrene foams. Exp. Therm. Fluid Sci. 92:346–352.
  • Zhou, Y., R. Bu, J. Gong, X. Zhang, C. Fan, and X. Wang. 2018a. Assessment of a clean and efficient fire-extinguishing technique: continuous and cycling discharge water mist system, j. Cleaner Prod 182:682–693.
  • Zhou, Y., R. Bu, X. Zhang, J. Gong, and C. Fan. 2019. Performance evaluation of water mist fire suppression: a clean and sustainable fire-fighting technique in mechanically-ventilated place, J. Cleaner Prod 209:1319–1331.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.