263
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Impact of Evaporation Models and Droplet Size on Auto-ignition and Lift-off Height in a Spray Jet Flame

&
Pages 175-194 | Received 06 Feb 2019, Accepted 23 Sep 2019, Published online: 17 Oct 2019

References

  • Abramzon, B., and W. A. Sirignano. 1989. Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transfer 32:1605. doi:10.1016/0017-9310(89)90043-4.
  • Aggarwal, S. K. 2014. Single droplet ignition: Theoretical analyses and experimental findings. Prog. Energ. Combust. 45:79. doi:10.1016/j.pecs.2014.05.002.
  • Arrieta-Sanagustín, J., A. L. Sánchez, A. Liñán, and F. A. Williams. 2013. Coupling-function formulation for monodisperse spray diffusion flames with infinitely fast chemistry. Fuel Process. Technol. 107:81. doi:10.1016/j.fuproc.2012.07.025.
  • Bellan, J., and K. Harstad. 1987. Analysis of the convective evaporation of nondilute clusters of drops. Int. J. Heat Mass Transfer 30:125. doi:10.1016/0017-9310(87)90065-2.
  • Birouk, M., and I. Gökalp. 2006. Current status of droplet evaporation in turbulent flows. Prog. Energ. Combust. 32:408. doi:10.1016/j.pecs.2006.05.001.
  • Boguslawski, A., K. Wawrzak, and A. Tyliszczak. 2019. A new insight onto understanding the Crow and Champagne preferred mode – A numerical study. J. Fluid Mech. 869:385. doi:10.1017/jfm.2019.220.
  • Borghesi, G., E. Mastorakos, and R. S. Cant. 2013. Complex chemistry DNS of n-heptane spray autoignition at high and intermediate temperature conditions. Combust. Flame. 160:1254. doi:10.1016/j.combustflame.2013.02.009.
  • Bottone, F., A. Kronenburg, D. Gosman, and A. Marquis. 2012. The numerical simulation of diesel spray combustion with LES-CMS. Flow. Turbul. Combust. 89:651. doi:10.1007/s10494-012-9415-y.
  • Chakraborty, N., and E. Mastorakos. 2007. Direct numerical simulations of localised forced ignition in turbulent mixing layers: The effects of mixture fraction and its gradient. Flow Turbul. Combust. 80:155. doi:10.1007/s10494-007-9110-6.
  • Clift, R., J. R. Grace, and M. E. Weber. 1978. Bubbles, drops and particles. New York: Academic Press.
  • Daif, A., M. Bouaziz, X. Chesneau, and A. A. Cherif. 1999. Comparison of multicomponent fuel droplet vaporization experiments in forced convection with the Sirignano model. Exp. Therm. Fluid. Sci. 19:282.
  • Duwig, C., K. J. Nogenmyr, C. Chan, and M. J. Dunn. 2011. Large eddy simulations of a piloted lean premix jet flame using finite-rate chemistry. Combust. Theor. Model. 15:537. doi:10.1080/13647830.2010.548531.
  • Eckel, G., J. Grohmann, L. Cantu, N. Slavinskaya, T. Kathrotia, M. Rachner, P. Le Clercq, W. Meier, and M. Aigner. 2019. LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry. Combust. Flame 207:134. doi:10.1016/j.combustflame.2019.05.011.
  • Eyssaertier, A., B. Cuenot, L. Y. M. Gicquel, and T. Poinsot. 2013. Using LES to predict ignition sequences and ignition probability of turbulent two-phase flames. Combust. Flame 160:1191. doi:10.1016/j.combustflame.2013.01.017.
  • Felden, A., L. Esclapez, E. Riber, B. Cuenot, and H. Wang. 2018. Including real fuel chemistry in LES of turbulent spray combustion. Combust. Flame 193:397. doi:10.1016/j.combustflame.2018.03.027.
  • Fernandez-Tarrazo, E., A. L. Sanchez, and A. Liñán. 2006. A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame 147:32. doi:10.1016/j.combustflame.2006.08.001.
  • Franzelli, B., E. Riber, M. Sanjosé, and T. Poinsot. 2010. A two-step chemical scheme for kerosene–Air premixed flames. Combust. Flame 157:1364. doi:10.1016/j.combustflame.2010.03.014.
  • Giusti, A., M. Kotzagianni, and E. Mastorakos. 2016. LES/CMC simulations of swirl-stabilised ethanol spray flames approaching blow-off. Flow Turbul. Combust. 97:1165. doi:10.1007/s10494-016-9762-1.
  • Godsave, G. A. E. 1953. Studies of the combustion of drops in a fuel spray: The burning of single drops of fuel. Proc. Combust. Inst. 4:818. doi:10.1016/S0082-0784(53)80107-4.
  • Hirschfelder, J. O., C. F. Curtiss, and R. B. Bird. 1954. Molecular Theory of Gases and Liquids. New York: John Wiley & Sons, Inc.
  • Irannejad, A., A. Banaeizadeh, and F. Jaberi. 2015. Large eddy simulation of turbulent spray combustion. Combust. Flame 162:431. doi:10.1016/j.combustflame.2014.07.029.
  • Jenny, P., D. Roekaerts, and N. Beishuizen. 2012. Modelling of turbulent dilute spray combustion. Prog. Energ. Combust. 38:846. doi:10.1016/j.pecs.2012.07.001.
  • Jones, W. P., and R. P. Lindstedt. 1988. Global reaction schemes for hydrocarbon combustion. Combust. Flame 73:233. doi:10.1016/0010-2180(88)90021-1.
  • Jones, W. P., S. Lyra, and S. Navarro-Martinez. 2012. Numerical investigation of swirling kerosene spray flames using large eddy simulation. Combust. Flame 159:1539. doi:10.1016/j.combustflame.2011.10.025.
  • Kahila, H., A. Wehrfritz, O. Kaario, and V. Vuorinen. 2019. Large-eddy simulation of dual-fuel ignition: Diesel spray injection into a lean methane-air mixture. Combust. Flame 199:131. doi:10.1016/j.combustflame.2018.10.014.
  • Khan, N., M. J. Cleary, O. T. Stein, and A. Kronenburg. 2018. A two-phase MMC-LES model for turbulent spray flames. Combust. Flame 193:424. doi:10.1016/j.combustflame.2018.03.023.
  • Kolaitis, D. I., and M. A. Founti. 2006. A comparative study of numerical models for Eulerian-Lagrangian simulations of turbulent evaporating sprays. Int. J. Heat. Fluid. Fl. 27:424. doi:10.1016/j.ijheatfluidflow.2006.01.002.
  • Kuban, L., J. Stempka, A. Wawrzak, and A. Tyliszczak 2017. DNS and ILES study of ethanol spray forced-ignition in a time-evolving mixing layer. Proc. MCS 10. Naples, Italy.
  • Ma, L., B. Naud, and D. Roekaerts. 2015. Transported PDF modelling of ethanol spray in hot-diluted coflow flame. Flow Turbul. Combust. 96:469. doi:10.1007/s10494-015-9623-3.
  • Mastorakos, E. 2017. Forced ignition of turbulent spray flames. Proc. Combust. Inst. 36:2367. doi:10.1016/j.proci.2016.08.044.
  • Miller, R. S., K. Harstad, and J. Bellan. 1998. Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid ow simulations. Int. J. Multiphase Flow 24:1025. doi:10.1016/S0301-9322(98)00028-7.
  • Mittal, R. 2000. Response of the sphere wake to freestream fluctuations. Theoret. Comput. Fluid Dyn. 13:397. doi:10.1007/s001620050120.
  • Neophytou, A., E. Mastorakos, and R. Cant. 2010. DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers. Combust. Flame 157:1071. doi:10.1016/j.combustflame.2010.01.019.
  • Noh, D., S. Gallot-Lavallé, W. P. Jones, and S. Navarro-Martinez. 2018. Comparison of droplet evaporation models for a turbulent, non-swirling jet flame with a polydisperse droplet distribution. Combust. Flame 194:135. doi:10.1016/j.combustflame.2018.04.018.
  • O’Loughlin, W., and A. R. Masri. 2011. A new burner for studying auto-ignition in turbulent dilute sprays. Combust. Flame 158:1577. doi:10.1016/j.combustflame.2010.12.021.
  • Pascaud, S., M. Boileau, B. Cuenot, and T. Poinsot 2005. Large eddy simulation of turbulent spray combustion in aeronautical gas turbines. In: ECCOMAS Thematic Conference on computational combustion. Lisbon, Portugal.
  • Prasad, V. N., M. Juddoo, A. Kourmatzis, and A. R. Masri. 2014. Investigation of lifted flame propagation under pulsing conditions using high-speed OH-LIF and LES. Flow. Turbul. Combust. 93:425. doi:10.1007/s10494-014-9558-0.
  • Prasad, V. N., A. R. Masri, S. Navarro-Martinez, and K. H. Luo. 2013. Investigation of auto-ignition in turbulent methanol spray flames using large eddy simulation. Combust. Flame 160:2941. doi:10.1016/j.combustflame.2013.07.004.
  • Saharin, S. B., B. Lefort, C. Morin, C. Chauveau, L. L. Moyne, and R. Kafafy. 2012. Vaporization characteristics of ethanol and 1-propanol droplets at high temperatures. Atomization and Spray 22:207. doi:10.1615/AtomizSpr.2012005061.
  • Sirignano, W. A. 2014. Advances in droplet array combustion theory and modelling. Prog. Energ. Combust. 42:54. doi:10.1016/j.pecs.2014.01.002.
  • Spalding, D. B. 1953. The combustion of liquid fuels. Proc. Combust. Inst. 4:847. doi:10.1016/S0082-0784(53)80110-4.
  • Stempka, J. 2018. Impact of subgrid modelling and numerical method on autoignition simulation of two-phase flow. Arch. Of Thermodyn. 39:55.
  • Tyliszczak, A. 2014. A high-order compact difference algorithm for half-staggered grids for laminar and turbulent incompressible flows. J. Comput. Phys. 276:438. doi:10.1016/j.jcp.2014.07.043.
  • Tyliszczak, A. 2016. High-order compact difference algorithm on half-staggered meshes for low Mach number flows. Comput. Fluids 127:131. doi:10.1016/j.compfluid.2015.12.014.
  • Tyliszczak, A. 2018. Parametric study of multi-armed jets. Int. J. Heat Fluid Fl. 73:82. doi:10.1016/j.ijheatfluidflow.2018.07.002.
  • Tyliszczak, A., and B. J. Geurts. 2014. Parametric analysis of excited round jets – Numerical study. Flow. Turbul. Combust. 93:221. doi:10.1007/s10494-014-9544-6.
  • Tyliszczak, A., and B. J. Geurts. 2015. Controlled mixing enhancement in turbulent rectangular jets responding to periodically forced inflow conditions. J. Turbul. 16:742. doi:10.1080/14685248.2015.1027345.
  • Veynante, D., and L. Vervisch. 2002. Turbulent combustion modelling. Prog. Energ. Combust. 28:193. doi:10.1016/S0360-1285(01)00017-X.
  • Vreman, W. 2004. An eddy-viscosity subgrid-scale model for turbulent shear ow: Algebraic theory and applications. Phys. Fluids 16:3670. doi:10.1063/1.1785131.
  • Vuorinen, V., H. Hillamo, O. Kaario, M. Nuutinen, M. Larmi, and L. Fuchs. 2011. Effect of droplet size and atomization on spray formation: A priori study using large-eddy simulation. Flow Turbul. Combust. 86:533. doi:10.1007/s10494-010-9266-3.
  • Vuorinen, V., M. Larmi, and L. Fuchs 2008. Large-eddy simulation on the effect of droplet size distribution on mixing of passive scalar in a spray. SAE Technical Paper 2008-01-0933.
  • Wandel, A. P., N. Chakraborty, and E. Mastorakos. 2009. Direct numerical simulations of turbulent flame expansion in fine sprays. P. Combust. Inst. 32:2283. doi:10.1016/j.proci.2008.06.102.
  • Wang, B., A. Kronenburg, G. L. Tufano, and O. T. Stein. 2018. Fully resolved DNS of droplet array combustion in turbulent convective flows and modelling for mixing fields in inter-droplet space. Combust. Flame 189:347. doi:10.1016/j.combustflame.2017.11.003.
  • Wawrzak, A., and A. Tyliszczak. 2018. Implicit LES study of spark parameters impact on ignition in a temporally evolving mixing layer between H2/N2 mixture and air. Int. J. Hydrogen Energ. 43:9815. doi:10.1016/j.ijhydene.2018.03.203.
  • Wawrzak, A., and A. Tyliszczak. 2019. A spark scenario in a temporally evolving mixing layer. Combust. Flame 209:353. doi:10.1016/j.combustflame.2019.07.045.
  • Westbrook, F. L., and C. K. Dryer. 1981. Simplified reaction mechanism for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Tech. 27:31. doi:10.1080/00102208108946970.
  • Yuen, M. C., and L. W. Chen. 1976. On drag of evaporating liquid droplets. Comb. Sci. Tech. 14:147. doi:10.1080/00102207608547524.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.