305
Views
1
CrossRef citations to date
0
Altmetric
Research Article

On the Effect of a DC Electric Field on Soot Particles’ Emission of a Laminar Diffusion Flame

, , &
Pages 213-224 | Received 08 Feb 2019, Accepted 21 Sep 2019, Published online: 15 Oct 2019

References

  • Abel, N. H. 1826. Auflosung einer mechanism Aufgabe. J. Reine Angew. Math. 1:153–57.
  • Bowser, R. J., and F. J. Weinberg. 1974. Electrons and the emission of soot from flames. Nature 249 (5455):339–41. doi:10.1038/249339a0.
  • Calcote, H. F. 1948. Electrical properties of flames. Symp. Combust. Flame Explos. Phenom., 3: 245–53.
  • Calcote, H. F., S. C. Kurzius, and W. J. Miller, 1965. Negative and secondary ion formation in low-pressure flames. Symp. (Int) Combust., 10 (1): 605–19.
  • Carleton, F. B., and F. J. Weinberg. 1987. Electric field-induced flame convection in the absence of gravity. Nature 330 (6149):635–36. doi:10.1038/330635a0.
  • Chang, H., and T. T. Charalampopoulos. 1990. Determination of the wavelength dependence of refractive indices of flame soot. Proc. R. Soc. A 430 (1880):577–91. doi:10.1098/rspa.1990.0107.
  • Chen, B., H. Wang, Z. Wang, J. Han, A. B. S. Alquaity, H. Wang, N. Hansen, and S. M. Sarathy. 2019. Ion chemistry in premixed rich methane flames. Combust. Flame 202:208–18. doi:10.1016/j.combustflame.2019.01.009.
  • Choi, B. C., and P. J. Park. 2018. A 1D ionic transport model for nonlinear response analysis of a counterflow laminar diffusion flame in DC electric fields. Fuel 233:610–19. doi:10.1016/j.fuel.2018.06.080.
  • Dasch, C. J. 1992. One-dimensional tomography: A comparison of Abel, onion-peeling, and filtered backprojection methods. Appl. Opt. 31:1146–52. doi:10.1364/AO.31.001146.
  • Gillon, P., V. Gilard, M. Idir, and B. Sarh. 2019. Electric field influence on the stability and the soot particles emission of a laminar diffusion flame. Combustion Science and Technology 191 (2):325–338.
  • Karnani, S., and D. Dunn-Rankin. 2015. Detailed characterization of DC electric field effects on small non-premixed flames. Combust. Flame 162 (7):2865–72. doi:10.1016/j.combustflame.2015.03.019.
  • Kim, G. T., D. G. Park, M. S. Cha, J. Park, and S. H. Chung. 2017. Flow instability in laminar jet flames driven by alternating current electric fields. Proc. Combust. Inst. 36 (3):4175–82. doi:10.1016/j.proci.2016.09.015.
  • Kim, M. K., S. K. Ryu, S. H. Won, and S. H. Chung. 2010. Electric fields effect on liftoff and blowoff of nonpremixed laminar jet flames in a coflow. Combust. Flame 157 (1):17–24. doi:10.1016/j.combustflame.2009.10.002.
  • Kuhl, J., T. Seeger, L. Zigan, S. Will, and A. Leipertz. 2017. On the effect of ionic wind on structure and temperature of laminar premixed flames influenced by electric fields. Combust. Flame 176:391–99. doi:10.1016/j.combustflame.2016.10.026.
  • Lawton, J., and F. J. Weinberg. 1964. Maximum ion currents from flames and the maximum practical effects of applied electric fields. Proc. R. Soc. Lond. A, 277:468–497.
  • Lawton, J., and F. J. Weinberg. 1969. Electrical aspects of combustion. Oxford: Clarendon Press.
  • Li, C., X. Wu, Y. Li, and X. Wei. 2017. Experimental study of positive and negative DC electric fields in lean premixed spherically expanding flames. Fuel 193:22–30. doi:10.1016/j.fuel.2016.12.001.
  • Luo, Y., Y. Gan, J. Xu, Y. Yan, and Y. Shi. 2017. Effects of electric field intensity and frequency of AC electric field on the small-scale ethanol diffusion flame behaviors. Appl. Therm. Eng. 115 (Supplement C):1330–36. doi:10.1016/j.applthermaleng.2016.11.145.
  • Luo, Y., Y. Gan, and X. Jiang. 2017. Investigation of the effect of DC electric field on a small ethanol diffusion flame. Fuel 188:621–27. doi:10.1016/j.fuel.2016.10.073.
  • Mayo, P. J., and F. J. Weinberg. 1970. On the size, charge and number-rate of formation of carbon particles in flames subjected to electric fields. Proc. R. Soc. A 319 (1538):351–71. doi:10.1098/rspa.1970.0183.
  • Park, D. G., B. C. Choi, M. S. Cha, and S. H. Chung. 2014. Soot reduction under DC electric fields in counterflow non-premixed laminar ethylene flames. Combust. Sci. Technol. 186 (4–5):644–56. doi:10.1080/00102202.2014.883794.
  • Park, D. G., S. H. Chung, and M. S. Cha. 2016. Bidirectional ionic wind in nonpremixed counterflow flames with DC electric fields. Combust. Flame 168:138–46. doi:10.1016/j.combustflame.2016.03.025.
  • Place, E. R., and F. J. Weinberg, 1967. The nucleation of flame carbon by ions and the effect of electric fields. Symp. (Int) Combust., 11 (1): 245–55.
  • Saito, M., T. Arai, and M. Arai. 1999. Control of soot emitted from acetylene diffusion flames by applying an electric field. Combust. Flame 119 (3):356–66. doi:10.1016/S0010-2180(99)00065-6.
  • Santoro, R. J., H. G. Semerjian, and R. A. Dobbins. 1983. Soot particle measurements in diffusion flames. Combust. Flame 51:203–18. doi:10.1016/0010-2180(83)90099-8.
  • Tinajero, J., and D. Dunn-Rankin. 2019. Non-premixed axisymmetric flames driven by ion currents. Combust. Flame 199:365–76. doi:10.1016/j.combustflame.2018.10.036.
  • Tinajero, J., G. Bernard, L. Autef, and D. Dunn-Rankin. 2017. Characterizing I-V curves for non-premixed methane flames stabilized on different burner configurations. Combust. Sci. Technol. 189 (10):1739–50. doi:10.1080/00102202.2017.1331218.
  • Wang, Y., G. J. Nathan, Z. T. Alwahabi, K. D. King, K. Ho, and Q. Yao. 2010. Effect of a uniform electric field on soot in laminar premixed ethylene/air flames. Combust. Flame 157 (7):1308–15. doi:10.1016/j.combustflame.2010.03.001.
  • Weinberg, F., and F. Carleton. 2009. Ionization and chemiluminescence during the progressive aeration of methane flames. Combust. Flame 156 (12):2276–84. doi:10.1016/j.combustflame.2009.08.008.
  • Xie, L., T. Kishi, and M. Kono, 1992. Investigation on the effect of electric fields on soot formation and flame structure of diffusion flames. Sympos. (Int) Combust., 24 (1): 1059–66.
  • Yamashita, K., S. Karnani, and D. Dunn-Rankin. 2009. Numerical prediction of ion current from a small methane jet flame. Combust. Flame 156:1227–33. doi:10.1016/j.combustflame.2009.02.002.
  • Yoon, S. H., B. Seo, J. Park, S. H. Chung, and M. S. Cha. 2019. Edge flame propagation via parallel electric fields in nonpremixed coflow jets. Proc. Combust. Inst. 37 (4):5537–44. doi:10.1016/j.proci.2018.06.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.