1,218
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effect of In-cylinder Flow Structures on Late Cycle Soot Oxidation in a Quiescent Heavy-duty Diesel Engine

, , , , &
Pages 316-336 | Received 04 Feb 2019, Accepted 19 Aug 2019, Published online: 17 Oct 2019

References

  • Arcoumanis, C., A. F. Bicen, and J. H. Whitelaw. 1983. Squish and swirl-squish interaction in motored model engines. J. Fluids Eng. 105:105–12. doi:https://doi.org/10.1115/1.3240925.
  • Barths, H., C. Hasse, and N. Peters. 2000. Computational fluid dynamics modelling of non-premixed combustion in direct injection diesel engines. Int. J. Engine Res. 1:249–67. arXiv. doi:https://doi.org/10.1243/146808700154516.
  • Bergin, M. J., R. D. Reitz, S. Oh, P. C. Miles, L. Hildingsson, and A. Hultqvist. 2007. Fuel injection and mean swirl effects on combustion and soot formation in heavy duty diesel engines. In SAE technical paper, SAE International. doi:https://doi.org/10.4271/2007-01-0912.
  • D’Errico, G., T. Lucchini, R. Di Gioia, and G. Bonandrini. 2012. Application of the ctc model to predict combustion and pollutant emissions in a common-rail diesel engine operating with multiple injections and high egr. In SAE 2012 world congress & exhibition, SAE International. doi:https://doi.org/10.4271/2012-01-0154.
  • Fatehi, H., H. Persson, T. Lucchini, M. Ljungqvist, and O. Andersson. 2019. Effects of in-cylinder flow structures on soot formation and oxidation in a swirl-supported light-duty diesel engine. In 14th International Conference on Engines & Vehicles, SAE International.
  • Fatehi, H., E. Wingren, T. Lucchini, G. D’Errico, A. Karlsson, O. Andersson, and X. S. Bai. 2018. A numerical study on the sensitivity of soot and nox formation to the operating conditions in heavy duty engines. In WCX World congress experience, SAE International. doi:https://doi.org/10.4271/2018-01-0177.
  • Leung, K., R. Lindstedt, and W. Jones. 1991. A simplified reaction mechanism for soot formation in nonpremixed flames. Combust. Flame 87:289–305. doi:https://doi.org/10.1016/0010-2180(91)90114-Q.
  • Lucchini, T., G. D’Errico, H. Jasak, and Z. Tukovic. 2007. Automatic mesh motion with topological changes for engine simulation. In SAE World congress & exhibition, SAE International. doi:https://doi.org/10.4271/2007-01-0170.
  • Lucchini, T., G. D’Errico, A. Onorati, G. Bonandrini, L. Venturoli, and R. Di Gioia. 2012. Development of a cfd approach to model fuel-air mixing in gasoline direct-injection engines. In SAE 2012 World Congress & Exhibition, SAE International. doi:https://doi.org/10.4271/2012-01-0146.
  • Lucchini, T., M. Fiocco, R. Torelli, and G. D’Errico. 2014. Automatic mech generation for full-cycle cfd modeling of ic engines: Application to the tcc test case. SAE 2014 World congress & exhibition, SAE International. doi:https://doi.org/10.4271/2014-01-1131.
  • Miles, P. C., D. Choi, M. Megerle, B. RempelEwert, R. D. Reitz, M. C. Lai, and V. Sick. 2004. The influence of swirl ratio on turbulent flow structure in a motored hsdi diesel engine - a combined experimental and numerical study. SAE technical paper, SAE International. doi:https://doi.org/10.4271/2004-01-1678.
  • Miles, P. C., M. Megerle, J. Hammer, Z. Nagel, R. D. Reitz, and V. Sick. 2002. Late-cycle turbulence generation in swirl-supported, direct-injection diesel engines. SAE technical paper, SAE International. doi:https://doi.org/10.4271/2002-01-0891.
  • Miles, P. C., M. Megerle, V. Sick, K. Richards, Z. Nagel, and R. D. Reitz. 2001. The evolution of flow structures and turbulence in a fired hsdi diesel engine. In SAE technical paper, SAE International. doi:https://doi.org/10.4271/2001-01-3501.
  • Mori, K., H. Jyoutaki, K. Kawai, and K. Sakai. 2000. New quiescent combustion system for heavyduty diesel engines to overcome exhaust emissions and fuel consumption tradeoff. In CEC/SAE Spring fuels & lubricants meeting & exposition, SAE International. doi:https://doi.org/10.4271/2000-01-1811.
  • Peters, N. 1983. Local quenching due to flame stretch and non-premixed turbulent combustion. Combust. Sci. Technol. 30:1–17. arXiv. doi:https://doi.org/10.1080/00102208308923608.
  • Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10:319–39. doi:https://doi.org/10.1016/0360-1285(84)90114-X.
  • Pitsch, H., H. Barths, and N. Peters. 1996. Three-dimensional modeling of nox and soot formation in di-diesel engines using detailed chemistry based on the interactive flamelet approach. In 1996 SAE international fall fuels and lubricants meeting and exhibition, SAE International. doi:https://doi.org/10.4271/962057.
  • REITZ, R. 1987. Modeling atomization processes in high-pressure vaporizing sprays. Atomisation Spray Technol. 3:309–37.
  • Yao, T., Y. Pei, B. J. Zhong, S. Som, T. Lu, and K. H. Luo. 2017. A compact skeletal mechanism for n-dodecane with optimized semi-global low-temperature chemistry for diesel engine simulations. Fuel 191:339–49. doi:https://doi.org/10.1016/j.fuel.2016.11.083.