391
Views
0
CrossRef citations to date
0
Altmetric
Research Article

POD Scale Analysis of Turbulent Premixed Flame Structure at Elevated Pressures

, ORCID Icon, , , , & show all
Pages 944-966 | Received 08 Apr 2019, Accepted 08 Oct 2019, Published online: 21 Oct 2019

References

  • Bagdanavicius, A., P. Bowen, N. Syred, and A. Crayford. 2013. Turbulent flame structure of methane-hydrogen mixtures at elevated temperature and pressure. Combust. Sci. Technol. 185 (2):350–61. doi:10.1080/00102202.2012.718005.
  • Bechtold, J. K., and M. Matalon. 2001. The dependence of the markstein length on stoichiometry. Combust. Flame 127:1906–13. doi:10.1016/S0010-2180(01)00297-8.
  • Berkooz, G., P. Holmes, and J. L. Lumley. 1993. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid. Mech. 25 (1):539–75. doi:10.1146/annurev.fl.25.010193.002543.
  • Bychkov, V., X. S. Bai, and R. Yu. 2015. Fractal flame structure due to the hydrodynamic darrieus-landau instability. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 92 (6):063028. doi:10.1103/PhysRevE.92.063028.
  • Chaudhuri, S., V. Akkerman, and C. K. Law. 2011. Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 84 (2 Pt 2):026322. doi:10.1103/PhysRevE.84.031705.
  • Chaudhuri, S., F. Wu, D. Zhu, and C. K. Law. 2012. Flame speed and self-similar propagation of expanding turbulent premixed flames. Phys. Rev. Lett. 108 (4):044503. doi:10.1103/PhysRevLett.108.044503.
  • Chen, J., D. Han, B. Yu, D. Sun, and J. Wei. 2017. A POD-Galerkin reduced-order model for isotropic viscoelastic turbulent flow. Int. Commun. Heat & Mass Transfer 84:121–33. doi:10.1016/j.icheatmasstransfer.2017.04.010.
  • Chiu, C.-W., Y.-C. Dong, and S. S. Shy. 2012. High-pressure hydrogen/carbon monoxide syngas turbulent burning velocities measured at constant turbulent reynolds numbers. Int. J. Hydrogen Energy 37 (14):10935–46. doi:10.1016/j.ijhydene.2012.04.023.
  • Cintosun, E., G. J. Smallwood, and Ö. L. Gülder. 2007. Flame surface fractal characteristics in premixed turbulent combustion at high turbulence intensities. Aiaa J. 45 (11):2785–89. doi:10.2514/1.29533.
  • Creta, F., R. Lamioni, P. E. Lapenna, and G. Troiani. 2016. Interplay of darrieus-landau instability and weak turbulence in premixed flame propagation. Phys. Rev. E 94 (5–1):053102. doi:10.1103/PhysRevE.94.053102.
  • Daniele, S., J. Mantzaras, P. Jansohn, A. Denisov, and K. Boulouchos. 2013. Flame front/turbulence interaction for syngas fuels in the thin reaction zones regime: Turbulent and stretched laminar flame speeds at elevated pressures and temperatures. J. Fluid Mech. 724:36–68. doi:10.1017/jfm.2013.141.
  • Driscoll, J. 2008. Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34 (1):91–134. doi:10.1016/j.pecs.2007.04.002.
  • Fogla, N., F. Creta, and M. Matalon. 2015. Effect of folds and pockets on the topology and propagation of premixed turbulent flames. Combust. Flame 162 (7):2758–77. doi:10.1016/j.combustflame.2015.04.012.
  • Fogla, N., F. Creta, and M. Matalon. 2017. The turbulent flame speed for low-to-moderate turbulence intensities: Hydrodynamic theory vs. experiments. Combust. Flame 175:155–69. doi:10.1016/j.combustflame.2016.06.023.
  • Fragner, R., F. Halter, N. Mazellier, C. Chauveau, and I. Gökalp. 2015. Investigation of pressure effects on the small scale wrinkling of turbulent premixed bunsen flames. Proc. Combust. Inst. 35 (2):1527–35. doi:10.1016/j.proci.2014.06.036.
  • Fureby, C. 2005. A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30 (1):593–601. doi:10.1016/j.proci.2004.08.068.
  • Gao, Y., N. Chakraborty, T. D. Dunstan, and N. Swaminathan. 2015. Assessment of reynolds averaged navier–stokes modeling of scalar dissipation rate transport in turbulent oblique premixed flames. Combust. Sci. Technol. 187 (10):150605222919004.
  • Gouldin, F. C. 1987. An application of fractals to modeling premixed turbulent flames. Combust. Flame 68 (3):249–66. doi:10.1016/0010-2180(87)90003-4.
  • Hemchandra, S., and T. Lieuwen. 2010. Local consumption speed of turbulent premixed flames – An analysis of “memory effects”. Combust. Flame 157:955–65. doi:10.1016/j.combustflame.2009.10.007.
  • Hiraoka, K., Y. Minamoto, M. Shimura, Y. Naka, N. Fukushima, and M. Tanahashi. 2016. A fractal dynamic SGS combustion model for large eddy simulation of turbulent premixed flames. Combust. Sci. Technol. 188 (9):1472–95. doi:10.1080/00102202.2016.1195820.
  • Huang, C., E. Yasari, L. C. R. Johansen, S. Hemdal, and A. N. Lipatnikov. 2016. Application of flame speed closure model to rans simulations of stratified turbulent combustion in a gasoline direct-injection spark-ignition engine. Combust. Sci. Technol. 188 (1):98–131. doi:10.1080/00102202.2015.1083988.
  • Kheirkhah, S., and Ö. L. Gülder. 2013. Turbulent premixed combustion in V-shaped flames: Characteristics of flame front. Phy. Fluids 25 (5):1–59. doi:10.1063/1.4807073.
  • Kobayashi, H., T. Kawahata, K. Seyama, Fujimari, T., Kim, JS. 2002. Relationship between the smallest scale of flame wrinkles and turbulent characteristics of high-pressure,high-temperature turbulent premixed flames. Proc. Combust. Inst.:29: 1793–1800.
  • Kobayashi, H., K. Seyama, H. Hagiwara, and Y. Ogami. 2005. Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature. Proc. Combust. Inst. 30 (1):827–34. doi:10.1016/j.proci.2004.08.098.
  • Lin, Y.-C., P. Jansohn, and K. Boulouchos. 2014. Turbulent flame speed for hydrogen-rich fuel gases at gas turbine relevant conditions. Int. J. Hydrogen Energy 39 (35):20242–54. doi:10.1016/j.ijhydene.2014.10.037.
  • Lipatnikov, A. N., and J. Chomiak. 2002. Turbulent flame speed and thickness: Phennomenology,evaluation, and application in multi-dimensional simulations. Prog. Energy Combust. Sci. 28:1–74. doi:10.1016/S0360-1285(01)00007-7.
  • Lipatnikov, A. N., and J. Chomiak. 2010. Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36 (1):1–102. doi:10.1016/j.pecs.2009.07.001.
  • Lumley, J. L. 1978. Computational modeling of turbulent flows. Arch. Appl. Mech. 18:123–76.
  • Mazellier, N., L. Danaila, and B. Renou. 2010. Multi-scale energy injection: A new tool to generate intense homogeneous and isotropic turbulence for premixed combustion. J. Turbul. 11 (43):1–30. doi:10.1080/14685248.2010.519708.
  • Mounaïm-Rousselle, C., L. Landry, F. Halter, and F. Foucher. 2013. Experimental characteristics of turbulent premixed flame in a boosted spark-ignition engine. Proc. Combust. Inst. 34 (2):2941–49. doi:10.1016/j.proci.2012.09.008.
  • Nie, Y., J. Wang, W. Zhang, M. Chang, M. Zhang, and Z. Huang. 2019. Flame brush thickness of lean turbulent premixed bunsen flame and the memory effect on its development. Fuel 242:607–16. doi:10.1016/j.fuel.2019.01.088.
  • Peters, N. 1988. Laminar flamelet concepts in turbulent combustion. Symp. Combust. 21 (1):1231–50. doi:10.1016/S0082-0784(88)80355-2.
  • Peters, N. 1992. A spectral closure for premixed turbulent combustion in the flamelet regime. J. Fluid Mech. 242 (242):611–29. doi:10.1017/S0022112092002519.
  • Sabelnikov, V. A., A. N. Lipatnikov, N. Chakraborty, S. Nishiki, and T. Hasegawa. 2017. A balance equation for the mean rate of product creation in premixed turbulent flames. Proc. Combust. Inst. 36 (2):1893–901. doi:10.1016/j.proci.2016.08.018.
  • Schmitt, T., M. Boileau, and D. Veynante. 2015. Flame wrinkling factor dynamic modeling for large eddy simulations of turbulent premixed combustion. Flow Turbul. Combust. 94 (1):199–217. doi:10.1007/s10494-014-9574-0.
  • Sirovich, L., M.Kirby, and M. Winter. 1990. An eigenfunction approach to large scale structures in jet flow. Phy. Fluids A Fluid Dyn. 2 (2):127–36. doi:10.1063/1.857815.
  • Soika, A., F. Dinkelacker, and A. Leipertz. 2003. Pressure influence on the flame front curvature of turbulent premixed flames: Comparison between experiment and theory. Combust. Flame 132 (3):451–62. doi:10.1016/S0010-2180(02)00490-X.
  • Troiani, G., F. Creta, and M. Matalon. 2015. Experimental investigation of darrieus–landau instability effects on turbulent premixed flames. Proc. Combust. Inst. 35 (2):1451–59. doi:10.1016/j.proci.2014.07.060.
  • Wang, J., M. Zhang, Z. Huang, T. Kudo, and H. Kobayashi. 2013. Measurement of the instantaneous flame front structure of syngas turbulent premixed flames at high pressure. Combust. Flame 160 (11):2434–41. doi:10.1016/j.combustflame.2013.06.008.
  • Wu, M.-S., and J. F. Driscoll. 1992. A numerical simulation of a vortex convected through a laminar premixed flame. Combust. Flame 91:310–22. doi:10.1016/0010-2180(92)90060-3.
  • Xie, Y., and Q. Li. 2019. Effect of the initial pressures on evolution of intrinsically unstable hydrogen/air premixed flame fronts. Int. J. Hydrogen Energy 44:17030–40. doi:10.1016/j.ijhydene.2019.04.220.
  • Xie, Y., X. Wang, J. Wang, and Z. Huang. 2019. Explosion behavior predictions of syngas/air mixtures with dilutions at elevated pressures: Explosion and intrinsic flame instability parameters. Fuel 255:115724. doi:10.1016/j.fuel.2019.115724.
  • Zhang, M., J. Wang, W. Jin, Z. Huang, H. Kobayashi, and L. Ma. 2015. Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame. Combust. Flame 162 (5):2087–97. doi:10.1016/j.combustflame.2015.01.007.
  • Zhang, M., J. Wang, Y. Xie, Z. Wei, W. Jin, Z. Huang, and H. Kobayashi. 2014. Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames. Exp. Therm. Fluid Sci. 52:288–96. doi:10.1016/j.expthermflusci.2013.10.002.
  • Zhang, W., J. Wang, S. Guo, Q. Yu, W. Jin, M. Zhang, and Z. Huang. 2019. Effects of integral scale on darrieus–landau instability in turbulent premixed flames. Flow Turbul. Combust. 103 (1):225–46. doi:10.1007/s10494-018-0006-4.
  • Zhang, W., J. Wang, Q. Yu, W. Jin, M. Zhang, and Z. Huang. 2018. Investigation of the fuel effects on burning velocity and flame structure of turbulent premixed flames based on leading points concept. Combust. Sci. Technol. 190 (8):1354–76. doi:10.1080/00102202.2018.1451848.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.