214
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Spontaneous Combustion Characteristics of Coal by Using the Simultaneous Thermal analysis–Fourier Transform Infrared Spectroscopy Technique

, , , ORCID Icon &
Pages 967-986 | Received 10 Jul 2019, Accepted 08 Oct 2019, Published online: 23 Oct 2019

References

  • Adamus, A., J. Šancer, P. Guřanová, and V. Zubiček. 2011. An investigation of the factors associated with interpretation of mine atmosphere for spontaneous combustion in coal mines. Fuel Process. Technol. 92:663–70. doi:10.1016/j.fuproc.2010.11.025.
  • Benfell, K. E., B. B. Beamish, and K. A. Rodgers. 1996. Thermogravimetric analytical procedures for characterizing New Zealand and Eastern Australian coals. Thermochim. Acta 286:67–74. doi:10.1016/0040-6031(96)02943-7.
  • Candelier, K., J. Dibdiakova, G. Volle, and P. Rousset. 2016. Study on chemical oxidation of heat treated lignocellulosic biomassunder oxygen exposure by STA–DSC–FTIR analysis. Thermochim. Acta 644:33–42. doi:10.1016/j.tca.2016.10.008.
  • Chen, X. K., T. Ma, X. W. Zhai, and C. K. Lei. 2019. Thermogravimetric and infrared spectroscopic study of bituminous coal spontaneous combustion to analyze combustion reaction kinetics. Thermochim. Acta 676:84–93. doi:10.1016/j.tca.2019.04.002.
  • Cong, K. L., Y. G. Zhang, F. Han, and Q. H. Li. 2019. Influence of particle sizes on combustion characteristics of coal particles in oxygen-deficient atmosphere. Energy 170: 840–48. Energy. Ins. 92 (2019) 741–754. doi:10.1016/j.joei.2018.02.008.
  • Deng, J., L. F. Ren, L. Ma, C. K. Lei, G. M. Wei, and W. F. Wang. 2018. Effect of oxygen concentration on low–Temperature exothermic oxidation of pulverized coal. Thermochim. Acta 667:102–10. doi:10.1016/j.tca.2018.07.012.
  • Deng, J., Y. Xiao, Q. W. Li, J. H. Lu, and H. Wen. 2015. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel 157:261–69. doi:10.1016/j.fuel.2015.04.063.
  • Duan, W. J., Q. B. Yu, X. H. Xie, and Q. Qin. 2017. Pyrolysis of coal by solid heat carrier-experimental study and kinetic modeling. Energy 135:317–26. doi:10.1016/j.energy.2017.06.132.
  • Galina, N. R., C. M. Romero Luna, G. L. A. F. Arce, and I. Ávila. 2019. Comparative study on combustion and oxy-fuel combustion environments using mixtures of coal with sugarcane bagasse and biomass sorghum bagasse by the thermogravimetric analysis. J. Energy. Ins. 92:741–54. doi:10.1016/j.joei.2018.02.008.
  • Kathy, E. B., B. B. Beamisha, and K. A. Rodgersb. 1996. Thermogravimetric analytical procedures for characterizing New Zealand and Eastern Australian coals. Thermochim. Acta 286:67–74. doi:10.1016/0040-6031(96)02943-7.
  • Kovalev, E. T., I. D. Drozdnik, Y. S. Kaftan, and N. B. Bidolenko. 2013. Composition, structure, and properties of coal from the 2.2 Ulug bed of the Elegestsk deposit in Ulug-Khemsk coal basin. Coke Chem. 5 (6):41–45. doi:10.3103/S1068364X13020038.
  • Lei, C. K., J. Deng, K. Cao, Y. Xiao, L. Ma, W. F. Wang, T. Ma, and C. M. Shu. 2019. A comparison of random forest and support vector machine approaches to predict coal spontaneous combustion in gob. Fuel 239:297–311. doi:10.1016/j.fuel.2018.11.006.
  • Li, H., Y. Chen, Y. Cao, G. J. Liu, and B. Q. Li. 2016. Comparative study on the characteristics of ball-milled coal fly ash. J. Therm. Anal. Calorim. 124:839–46. doi:10.1007/s10973-015-5160-5.
  • Li, Q. W., Y. Xiao, C. P. Wang, J. Deng, and C. M. Shu. 2019. Thermokinetic characteristics of coal spontaneous combustion based on thermogravimetric analysis. Fuel 250:235–44. doi:10.1016/j.fuel.2019.04.003.
  • Liu, L., and F. B. Zhou. 2010. A comprehensive hazard evaluation system for spontaneous combustion of coal in underground mining. Int. J. Coal Geol. 82:27–36. doi:10.1016/j.coal.2010.01.014.
  • Ma, D., B. T. Qin, S. Song, H. J. liang, and A. Gao. 2017a. An experimental study on the effects of air humidity on the spontaneous combustion characteristics of coal. Combust. Sci. Technol. 189:2209–19. doi:10.1080/00102202.2017.1368500.
  • Ma, L. Y., D. M. Wang, Y. Wang, G. L. Dou, and H. H. Xin. 2017b. Synchronous thermal analyses and kinetic studies on a caged-wrapping and sustained-release type of composite inhibitor retarding the spontaneous combustion of low-rank coal. Fuel Process. Technol. 157:65–75. doi:10.1016/j.fuproc.2016.11.011.
  • Nie, B. S., X. F. Liu, L. L. Yang, J. Q. Meng, and X. C. Li. 2015. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy. Fuel 158:908–17. doi:10.1016/j.fuel.2015.06.050.
  • Nimaje, D. S., and D. P. Tripathy. 2016. Characterization of some Indian coals to assess their liability to spontaneous combustion. Fuel 163:139–47. doi:10.1016/j.fuel.2015.09.041.
  • Ozbas, K. E., M. V. Kök, and C. Hicyilmaz. 2003. DSC study of the combustion properties of turkish coals. J. Therm. Anal. Calorim. 71:224–31. doi:10.1023/A:1023378226686.
  • Qi, X. Y., Q. Z. Li, H. J. Zhang, and H. H. Xin. 2017. Thermodynamic characteristics of coal reaction under low oxygen concentration conditions. J. Energy Inst. 90:544–55. doi:10.1016/j.joei.2016.05.007.
  • Qi, X. Y., D. M. Wang, H. H. Xin, and G. S. Qi. 2013. In Situ FTIR study of real–time changes of active groups during oxygen–free reaction of coal. Energy Fuels 27:3130–36. doi:10.1021/ef400534f.
  • Raymond, C. J., J. Farmer, and C. R. Dockery. 2016. Thermogravimetric analysis of target inhibitors for the spontaneous self-heating of coal. Combust. Sci. Technol. 188:1249–61. doi:10.1080/00102202.2016.1177034.
  • Rousset, P., B. Mondher, K. Candellier, G. Volle, J. Dibdiakova, and G. Humbert. 2017. Comparing four bio-reducers self-ignition propensity by applying heat-based methods derived from coal. Thermochim. Acta 655:13–20. doi:10.1016/j.tca.2017.06.006.
  • Shi, Q. L., B. T. Qin, Q. Bi, and B. Qu. 2018a. Fly ash suspensions stabilized by hydroxypropyl guar gum and xanthan gum for retarding spontaneous combustion of coal. Combust. Sci. Technol. 190:2097–110. doi:10.1080/00102202.2018.1491845.
  • Shi, Q. L., B. T. Qin, Q. Bi, and B. Qu. 2018b. An experimental study on the effect of igneous intrusions on chemical structure and combustion characteristics of coal in Daxing Mine, China. Fuel 226:307–15. doi:10.1016/j.fuel.2018.04.027.
  • Shi, T., X. F. Wang, J. Deng, and Z. Y. Wen. 2005. The mechanism at the initial stage of the room–Temperature oxidation of coal. Combust. Flame 140:332–45. doi:10.1016/j.combustflame.2004.10.012.
  • Song, Z. Y., and C. Kuenzer. 2017. Spectral reflectance (400–2500 nm) properties of coals, adjacent sediments, metamorphic and pyrometamorphic rocks in coal-fire areas: A case study of Wuda coalfield and its surrounding areas, northern China. Int. J. Coal Geol. 171:142–52. doi:10.1016/j.coal.2017.01.008.
  • Tang, X. J., Y. T. Liang, H. Z. Dong, Y. Sun, and H. Z. Luo. 2014. Analysis of index gases of coal spontaneous combustion using fourier transform infrared spectrometer. J. Spectrosc. 2014:1–8. doi:10.1155/2014/414391.
  • Tian, L. N., H. P. Chen, Z. H. Chen, X. H. Wang, and S. H. Zhang. 2014. A study of non-isothermal kinetics of limestone decomposition in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres. J. Therm. Anal. Calorim. 115:45–47. doi:10.1007/s10973-013-3316-8.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003a. Analysis of the mechanism of the low–Temperature oxidation of coal. Combust. Flame 134:107–17. doi:10.1016/S0010-2180(03)00086-5.
  • Wang, H. H., B. Z. Dlugogorski, and E. M. Kennedy. 2003b. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modeling. Prog. Energy Combust. Sci. 29:487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wang, J. R., Y. Q. Sun, Q. F. Zhao, C. B. Deng, and H. Z. deng. 2008. Basic theory research of coal spontaneous combustion. J. Coal Sci. Eng. (China) 14:239–43. doi:10.1007/s12404-008-0050-0..
  • Xu, Y. L., L. Y. Wang, N. Tian, J. P. Zhang, M. G. Yu, and M. A. Delichatsios. 2017. Spontaneous combustion coal parameters for the Crossing-Point Temperature (CPT) method in a Temperature–Programmed System (TPS). Fire Saf. J. 91:147–54. doi:10.1016/j.firesaf.2017.03.084.
  • Zhai, X. W., B. Wang, K. Wang, and O. Dariusz. 2019. Study on the influence of water immersion on the characteristic parameters of spontaneous combustion oxidation of low-rank bituminous coal. Combust. Sci. Technol. 191:2097–110. doi:10.1080/00102202.2018.1511544.
  • Zhang, Y. T., Y. Q. Li, Y. Huang., S. S. Li, and W. F. Wang. 2018a. Characteristics of mass, heat and gaseous products during coal spontaneous combustion using TG/DSC-FTIR technology: The impacts of oxygen concentrations and heating rates. J. Therm. Anal. Calorim. 131:2963–74. doi:10.1007/s10973-017-6738-x.
  • Zhang, Y. T., Y. R. Liu, X. Q. Shi, C. P. Yang, W. F. Wang, and Y. Q. Li. 2018b. Risk evaluation of coal spontaneous combustion on the basis of auto–Ignition temperature. Fuel 233:68–76. doi:10.1016/j.fuel.2018.06.052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.