350
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Self-Acceleration and Self-Similarity of Hydrogen–Methane–Air Flame at Elevated Pressure

, , , &
Pages 1005-1021 | Received 22 Jul 2019, Accepted 07 Oct 2019, Published online: 21 Oct 2019

References

  • Askari, O., M. Elia, M. Ferrari, and H. Metghalchi. 2017. Cell formation effects on the burning speeds and flame front area of synthetic gas at high pressures and temperatures. Appl. Energy 189:568–77. doi:10.1016/j.apenergy.2016.12.090.
  • Bauwens, C. R., J. M. Bergthorson, and S. B. Dorofeev. 2015. Experimental study of spherical-flame acceleration mechanisms in large-scale propane-air flames. Proc. Combust. Inst. 35:2059–66. doi:10.1016/j.proci.2014.06.118.
  • Boushaki, T., Y. Dhue, L. Selle, B. Ferret, and T. Poinsot. 2012. Effects of hydrogen and steam addition on laminar burning velocity of methane-air premixed flame: Experimental and numerical analysis. Int. J. Hydrogen Energy. 37:9412–22. doi:10.1016/j.ijhydene.2012.03.037.
  • Bradley, D., T. M. Cresswell, and J. S. Puttock. 2001. Flame acceleration due to flame-induced instabilities in large-scale explosions. Combust. Flame. 124:551–59. doi:10.1016/S0010-2180(00)00208-X.
  • Brequigny, P., F. Halter, and C. M. Rousselle. 2016. Lewis number and Markstein length effects on turbulent expanding flames in a spherical vessel. Exp. Therm. Fluid Sci. 73:33–41. doi:10.1016/j.expthermflusci.2015.08.021.
  • Gostintsev, Y. A., A. G. Istratov, and Y. V. Shulenin. 1988. Self-similar propagation of a free turbulent flame in mixed gas mixtures. Combust. Explo. Shock Wave. 24:63–70.
  • Goulier, J., A. Comandini, F. Halter, and N. Chaumeix. 2017. Experimental study on turbulent expanding flames of lean hydrogen/air mixtures. Proc. Combust. Inst. 36:2823–32. doi:10.1016/j.proci.2016.06.074.
  • Halter, F., C. Chauveau, N. D. Chaumeix, and I. Gokalp. 2005. Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane-hydrogen-air mixture. Proc. Combust. Inst. 30:201–08. doi:10.1016/j.proci.2004.08.195.
  • Haq, M. Z. 2005. Correlations for the onset of instabilities of spherical laminar premixed flames. J. Heat. Transfer. 127:1410–15. doi:10.1115/1.2098867.
  • Hu, E., Z. Huang, J. He, J. Zheng, and H. Miao. 2009. Measurements of laminar burning velocities and onset of cellular instabilities of methane-hydrogen-air flames at elevated pressure and temperatures. Int. J. Hydrogen Energy. 34:5574–84. doi:10.1016/j.ijhydene.2009.04.058.
  • Ji, C., D. Wang, J. Yang, and S. Wang. 2017. A comprehensive study of light hydrocarbon mechanisms performance in predicting methane/hydrogen/air laminar burning velocities. Int. J. Hydrogen Energy. 42:17260–74. doi:10.1016/j.ijhydene.2017.05.203.
  • Kim, W., T. Endo, T. Mogi, K. Kuwana, and R. Dobashi. 2019. Wrinkling of large-scale flame in lean propane-air mixture due to cellular instabilities. Combust. Sci. Technol. 3:491–503. doi:10.1080/00102202.2018.1502757.
  • Kim, W., Y. Sato, T. Johzaki, T. Endo, D. Shimokuri, and A. Miyoshi. 2018. Experimental study on self-acceleration in expanding spherical hydrogen-air flames. Int. J. Hydrogen Energy. 43:12556–64. doi:10.1016/j.ijhydene.2018.04.153.
  • Kim, W. K., T. Mogi, and R. Dobashi. 2013. Flame acceleration in unconfined hydrogen/air deflagrations using infrared photography. J. Loss Prev. Process Ind. 26:1501–06. doi:10.1016/j.jlp.2013.09.009.
  • Kim, W. K., T. Mogi, K. Kuwana, and R. Dobashi. 2015. Self-similar propagation of expanding spherical flames in large scale gas explosions. Proc. Combust. Inst. 35:2051–58. doi:10.1016/j.proci.2014.08.023.
  • Kwon, O. C., G. Rozenchan, and C. K. Law. 2002. Cellular instabilities and self-acceleration of outwardly propagating spherical flames. Proc. Combust. Inst. 29:1775–83. doi:10.1016/S1540-7489(02)80215-2.
  • Lapalme, D., F. Halter, C. M. Rousselle, and P. Seers. 2018. Characterization of thermodiffusive and hydrodynamic mechanisms on the cellular instability of syngas fuel blended with CH4 or CO2. Combust. Flame. 193:481–90. doi:10.1016/j.combustflame.2018.03.028.
  • Law, C. K., G. Jomaas, and J. K. Bechtold. 2005. Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: Theory and experiment. Proc. Combust. Inst. 30:159–67. doi:10.1016/j.proci.2004.08.266.
  • Li, Y., M. Bi, B. Li, Y. Zhou, and W. Gao. 2018b. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels. Fuel 233:269–82. doi:10.1016/j.fuel.2018.06.042.
  • Li, Y., M. Bi, B. Li, Y. Zhou, L. Huang, and W. Gao. 2018c. Explosion hazard evaluation of renewable hydrogen/ammonia/air fuels. Energy 159:252–63. doi:10.1016/j.energy.2018.06.174.
  • Li, Y., M. Bi, S. Zhang, H. Jiang, B. Gan, and W. Gao. 2018a. Dynamic couplings of hydrogen/air flame morphology and explosion pressure evolution in the spherical chamber. Int. J. Hydrogen Energy. 43:2503–13. doi:10.1016/j.ijhydene.2017.12.044.
  • Michelson, D. M., and G. I. Sivashinsky. 1977. Nonlinear analysis of hydrodynamic instability in laminar flames-. Numerical experiments. Acta. Astronaut. 4:1207–21. doi:10.1016/0094-5765(77)90097-2.
  • Muppala, S. P. R., M. Nakahara, N. K. Aluri, H. Kido, J. X. Wen, and M. V. Papalexandris. 2009. Experimental and analytical investigation of the turbulent burning velocity of two-component fuel mixtures of hydrogen, methane and propane. Int. J. Hydrogen Energy. 34:9258–65. doi:10.1016/j.ijhydene.2009.09.036.
  • Nishimura, I., T. Mogi, and R. Dobashi. 2013. Simple method for predicting pressure behavior during gas explosions in confined spaces considering flame instabilities. J. Loss Prev. Process Ind. 26:351–54. doi:10.1016/j.jlp.2011.08.009.
  • Okafor, E. C., A. Hayakawa, Y. Nagano, and T. Kitagawa. 2014. Effects of hydrogen concentration on premixed laminar flames of hydrogen-methane-air. Int. J. Hydrogen Energy. 39:2409–17. doi:10.1016/j.ijhydene.2013.11.128.
  • Saeed, K. 2017. Determination of the explosion characteristics of methanol-air mixture in a constant volume vessel. Fuel 210:729–37. doi:10.1016/j.fuel.2017.09.004.
  • Sarli, V. D., and A. D. Benedetto. 2007. Laminar burning velocity of hydrogen-methane/air premixed flames. Int. J. Hydrogen Energy. 32:637–46. doi:10.1016/j.ijhydene.2006.05.016.
  • Sivashinsky, G. I. 1977. Nonlinear analysis of hydrodynamic instability in laminar flames-. Derivation of basic equations. Acta. Astronaut. 4:1177–206. doi:10.1016/0094-5765(77)90096-0.
  • Wang, J., Y. Xie, X. Cai, Y. Nie, C. Peng, and Z. Huang. 2016. Effects of H2O addition on the flame front evolution of syngas spherical propagation flames. Combust. Sci. Technol. 188:1054–72. doi:10.1080/00102202.2016.1145118.
  • Wu, F. J., G. Jomaas, and C. K. Law. 2013. An experimental investigation on self-acceleration of cellular spherical flames. Proc. Combust. Inst. 34:937–45. doi:10.1016/j.proci.2012.05.068.
  • Xiao, H., X. He, Q. Duan, X. Luo, and J. Sun. 2014. An investigation of premixed flame propagation in a closed combustion duct with a 90° blend. Appl. Energy 134:248–56. doi:10.1016/j.apenergy.2014.07.071.
  • Xie, Y., J. Wang, X. Cai, and Z. Huang. 2016. Self-acceleration of cellular flames and laminar flame speed of syngas/air mixture at elevated pressures. Int. J. Hydrogen Energy. 41:18250–58. doi:10.1016/j.ijhydene.2016.07.239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.