576
Views
2
CrossRef citations to date
0
Altmetric
Research Article

New Evaluation Methods for Coal Loss Due to Underground Coal Fires

, &
Pages 1022-1041 | Received 01 Dec 2018, Accepted 10 Oct 2019, Published online: 21 Oct 2019

References

  • Cai, Z. 2008. Application of high resolution and TEM for controlling environmental and geodisaster in coalfield fire zone. China Min. Magn. 17:97–102. (in Chinese).
  • Carnec, C., and C. Delacourt. 2000. Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France. J. Appl. Geophys. 43 (1):43–54. doi:10.1016/S0926-9851(99)00032-4.
  • Chatterjee, R. S. 2006. Coal fire mapping from satellite thermal IR data–A case example in jharia Coalfield, Jharkhand, India. ISPRS J. Photogramm. Remote Sens. 60 (2):113–28. doi:10.1016/j.isprsjprs.2005.12.002.
  • Chen, M., and W. Shao. 2010. The application of the ground magnetic method in the exploration of fire area boundary of the coalfield. Geophys. Geochem. Explor. 34 (1):89–92.
  • Ellyett, C. D., and A. W. Fleming. 1974. Thermal infrared imagery of the burning mountain coal fire. Remote Sens. Environ. 3 (1):79–86. doi:10.1016/0034-4257(74)90040-6.
  • Fan, H., X. Gao, J. Yang, K. Deng, and Y. Yu. 2015. Monitoring mining subsidence using a combination of phase-stacking and offset-tracking methods. Remote Sens. 7 (7):9166–83. doi:10.3390/rs70709166.
  • Fan, H. D., G. Wei, Q. Yong, J. Q. Xue, and B. Q. Chen. 2014. A model for extracting large deformation mining subsidence using D-InSAR technique and probability integral method. Trans. Nonferrous Metals Soc. China 24 (4):1242–47.
  • Gabriel, A. K., R. M. Goldstein, and H. A. Zebker. 1989. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. 94 (B7):9183–91. doi:10.1029/JB094iB07p09183.
  • Gundelach, V., 2010. Contributions to the exploration of coal seam fires in China with ground penetrating radar. In Latest developments in coal fire research—bridging the science, economics,and politics of a global disaster, ed. C. Drebenstedt, C. Fischer, U. Meyer, J. Wu, and B. Kong, pp. 93–98. 2nd International conference on coal fire research (ICCFR2), Berlin.
  • He, G. Q., L. Yang, G. D. Ling, F. C. Jia, and D. Hong. (1991). Mining subsidence. Xu Zhou: China University of Mining and Technology Press.
  • Heffern, E. L., and D. A. Coates. 2004. Geologic history of natural coal-bed fires, Powder River basin, USA. Int. J. Coal Geol. 59 (1–2):25–47. doi:10.1016/j.coal.2003.07.002.
  • Krietsch, A., M. Schmidt, S. Suhendra, and M. Helmis (2010). Laboratory investigations on the ignition and burning process of coal: Fire characteristics and gas emissions. In Latest developments incoal fire research—bridging the science, economics, and politics of a global disaster, ed. C. Drebenstedt, C. Fischer, U. Meyer, J. Wu, and B. Kong, 147–52, 2nd International conference on coal fire research (ICCFR2), Berlin.
  • Künzer, C., J. Zhang, A. Hirner, Y. Bo, Y. Jia, and Y. Sun. 2007a. Multi-temporal insitu mapping of the Wuda coal fires from 2000 to 2005: Assessing coal fire dynamics. In Spontaneous coal seam fires: Mitigating a global disaster. ERSEC ecological book Series, vol. 4, 132–48. Beijing: Tsinghua University Press and Springer. ISBN: 978-7-302-17140-9.
  • Künzer, C., J. Zhang, J. Li, S. Voigt, H. Mehl, and W. Wagner. 2007b. Detecting unknown coal fires: Synergy of automated coal fire risk area delineation and improved thermal anomaly extraction. Int. J. Remote Sens. 28 (20):4561–85. doi:10.1080/01431160701250432.
  • Lee, Y., J. J. Filliben, R. J. Micheals, and P. Jonathon Phillips. 2013. Sensitivity analysis for biometric systems: A methodology based on orthogonal experiment designs. Comput. Vision Image Understanding 117 (5):532–50. doi:10.1016/j.cviu.2013.01.003.
  • Li, H. Z., G. L. Guo, J. F. Zha, Y. F. Yuan, and B. C. Zhao. 2016. Research on the surface movement rules and prediction method of underground coal gasification. Bull. Eng. Geol. Environ. 75 (3):1133–42. doi:10.1007/s10064-015-0809-7.
  • Lindner, H., H. Rueter, and S. F. Bauer (2010). Geomagnetic measurements and interpretation: Wuda, fire zone 18. Latest Developments in Coal Fire Research—Bridging the Science, Economics, and Politics of a Global Disaster, Berlin, 99–104.
  • Litschke, T., J. Wiegand, S. Schloemer, H. Gielisch, and F. K. Bandelow. 2008. Detailed mapping of coal fires in combination with in-situ gas flow measurements to estimate mass flow balance and fire development. In Spontaneous coal seam fires: Mitigating a global disaster, vol. 4, 306–33. Beijing: UNESCO.
  • Pone, J. D. N., K. A. A. Hein, G. B. Stracher, H. J. Annegarn, R. B. Finkelman, D. R. Blake, J. K. McCormack, and P. Schroeder. 2007. The spontaneous combustion of coal and its by-products in the witbank and sasolburg coalfields of south africa. Int. J. Coal Geol. 72:124–140.
  • Schaumann, G., B. Siemon, and C. Yu (2008). Geophysical investigation of Wuda coal mining area, Inner Mongolia: Electromagnetics and magnetics for coal fire detection. In spontaneous coal seam fires: Mitigating a global disaster. International research for sustainable control and management; International Conference, 336–50, Beijing, Tsinghua University Press and Springer Verlag, [Beijing], November 29–December 1, 2005.
  • Shao, Z., D. Wang, Y. Wang, and X. Zhong. 2014. Theory and application of magnetic and self-potential methods in the detection of the Heshituoluogai coal fire, China. J. Appl. Geophys. 104:64–74. doi:10.1016/j.jappgeo.2014.02.014.
  • Shao, Z. L., D. M. Wang, and Y. M. Wang. 2013. Simulation of high-density electrical method in detecting coal fires and its application. J. Min. Saf. Eng. 30:469–74.
  • Song, Z., H. Zhu, J. Xu, and X. Qin. 2014. Numerical study on effects of atmospheric pressure fluctuations on hill-side coal fires and surface anomalies. Int. J. Min. Sci. Technol. (Accepted).
  • Strozzi, T., A. Luckman, T. Murray, U. Wegmuller, and C. L. Werner. 2002. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 40 (11):2384–91. doi:10.1109/TGRS.2002.805079.
  • Taraba, B., and Z. Michalec. 2011. Effect of longwall face advance rate on spontaneous heating process in the gob area–CFD modelling. Fuel. 90 (8):2790–97. doi:10.1016/j.fuel.2011.03.033.
  • Wang, W. P., C. C. Yu, Y. Y. Fang, J. H. Wan, G. Y. Xiao, and C. P. Wu. 2007. Geophysical characteristics and underground coal fire distribution in Wuda area, Innermongolia. Geophys. Geochem. Explor. 31:551–55.
  • Xie, J., S. Xue, W. Cheng, and G. Wang. 2011. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system. Int. J. Coal Geol. 85 (1):123–27. doi:10.1016/j.coal.2010.10.007.
  • Yan, J. H., and J. F. Liu. 2011. A new incremental insertion algorithm for Delaunay triangulation insertion order. Annual conference of Beijing society of theoretical and applied mechanics, Beijing.
  • Yao, J. Z. Research on the isoline generation algorithm based on Delaunay triangulation. Anhui University, 2015. doi:10.1128/AEM.03322-14
  • Zebker, H. A., P. A. Rosen, R. M. Goldstein, A. Gabriel, and C. L. Werner. 1994. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. J. Geophys. Res. 99 (B10):19617–34. doi:10.1029/94JB01179.
  • Zhang, J., and C. Kuenzer. 2007. Thermal surface characteristics of coal fires 1 results of in-situ measurements. J. Appl. Geophys. 63 (3–4):117–34. doi:10.1016/j.jappgeo.2007.08.002.
  • Zhang, J., H. Guan, and D. Cao. 2008. Underground coal fires in China: Origin, detection, fire-fighting, and prevention, 3. Beijing: China Coal Industry Publishing House.
  • Zhu, H. Q., Z. Y. Song, B. Tan, and Y. Z. Hao. 2013. Numerical investigation and theoretical prediction of self-ignition characteristics of coarse coal stockpiles. J. Loss Prev. Process Ind. 26 (1):236–44. doi:10.1016/j.jlp.2012.11.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.